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Scaling Sampling-based Motion Planning to Humanoid Robots
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Abstract— Planning balanced and collision-free motion for
humanoid robots is non-trivial, especially when they are oper-
ated in complex environments, such as reaching targets behind
obstacles or through narrow passages. Research has been done
in particular to plan such complex motion on humanoids,
however, these approaches are typically restricted to particular
robot platforms and environments, which can not be easily
replicated nor applied. We propose a method that allows us
to apply existing sampling-based algorithms directly to plan
trajectories for humanoids by utilizing a customized state
space representation, biased sampling strategies, and a steering
function based on a robust inverse kinematics solver. Our
approach requires no prior offline computation, thus one can
easily transfer the work to new robot platforms. We tested the
proposed method by solving practical reaching tasks on a 38
degrees-of-freedom humanoid robot, NASA Valkyrie, showing
that our method is able to generate valid motion plans that can
be executed on advanced full-size humanoid robots.

I. INTRODUCTION

Humanoid robots are highly redundant systems that are de-
signed for accomplishing a variety of tasks in environments
designed for people. However, humanoids have a large num-
ber of degrees-of-freedom (DoF) which makes motion plan-
ning extremely challenging. In general, optimization-based
algorithms are suitable for searching for optimal solutions
even in high dimensional systems [1] [2], but it is non-trivial
to generate optimal collision-free trajectories for humanoids
using optimization approaches within timeframes acceptable
for online planning, especially in complex environments.
This is mainly due to the highly non-linear map between the
robot and the collision environment. This mapping can be
learned [3] [4] [5] or modelled in abstract spaces [6] [7] for
low dimensional problems, but is too difficult for high DoF
humanoids due to the curse of dimensionality and it often
causes local minima problems. Additionally, solving locomo-
tion and whole-body manipulation in complex environments
as one combined problem requires searching through a large
space of possible actions. Instead, it is more effective to
first generate robust walking plans to move the robot to a
desired standing location, and then generate collision-free
motion with stationary feet [8]. Although assuming fixed
feet position may be viewed as restrictive, we argue that
a large variety of whole body manipulation tasks can still
be executed as a series of locomotion and manipulation
subtasks. In this work, we propose an extension to a family
of sampling based motion planning algorithms that will allow
us to plan collision-free whole-body motions on floating-base
systems which require active balancing.
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Fig. 1: Collision-free and balanced full-body motion exe-
cuted on the 38 DoF NASA Valkyrie robot. Lower body
movement is not shown for clarity.

Sampling-based planning (SBP) algorithms, such as RRT
[9] and PRM [10], are capable of efficiently generating
globally valid collision-free trajectories due to their sim-
plicity. In the past two decades, SBP algorithms have been
applied to countless problems with a variety of derivatives,
such as RRT-Connect [11], Expansive Space Trees (EST)
[12], RRT*/PRM* [13], Kinematic Planning by Interior-
Exterior Cell Exploration (KPIECE) [14], and many others
[15]. However, since the SBP algorithms were originally
designed for mobile robots and low DoF robotic arms, using
them on high DoF systems requiring active balancing is still
challenging. We will call a robot pose statically balanced
if the controller can achieve an equilibrium in this state
while achieving zero velocity and acceleration (e.g. when
the projection of centre of mass lies within the support poly-
gon). The subset of robot configurations with this property
forms a low dimensional manifold defined by the balance
constraint. In practice, the rejection rate of random samples is
prohibitively high without the explicit or implicit knowledge
of the manifold.

Approaches have been proposed to address this particular
problem of using SBP algorithms for humanoid robots.
Kuffner et al. [16] use a customized RRT-Connect algo-
rithm to plan whole body motion for humanoids, where
they only sample from a pre-calculated pool of postures
for which the robot is in balance. Hauser at al. [17] in-
troduce motion primitives into SBP algorithms where the
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sampler only samples states around a set of pre-stored motion
primitives. These approaches share the common idea of
using an offline generated sample set to bootstrap online
processes, thus allowing algorithms to bypass the expensive
online generation of balanced samples [16] [17]. By storing
sample configurations with different lower body postures,
one can also generate whole body motion that consists of
coordinated locomotion and upper body movement [18].
However, this leads to the problem where one has to store a
significant number of samples to densely cover the balance
manifold, otherwise the algorithms may fail while valid
solutions exist but were not stored during offline processing.
Another direction for solving humanoid motion planning
problem is constraint sampling. Dalibard et al. [19] replace
the steering/interpolation component in RRT-Connect with a
constraint connect function to ensure the new nodes added
to the tree are balanced and collision free. Fumio et al. [20]
split the whole body into several kinematic chains by fixing
the base height. Such separation reduces the processing
time for whole body kinematics, however, one loses the
redundancy of the full kinematic structure. Most of the
existing approaches are normally platform specific, which
makes it difficult and time consuming to transfer the work to
other robot platforms for generic humanoid motion planning
problems. Sampling-based planning methods for humanoids
are by no means new concepts in robotics. However, these
methods are often customized from basic algorithms such
as RRT-Connect for particular robots and environments, it
is non-trivial to reuse or apply these methods on generic
humanoid robots for solving generic problems.

To this end, instead of developing new SBP algorithms
specifically for humanoids, we focus on enabling the stan-
dard SBP algorithms to solve humanoids motion planning
problems by modifying the underlying key components
of generic SBP approaches, such as space representation,
sampling strategies and interpolation functions. In order to
make the method generic for any humanoid platforms, rather
than store balanced samples during offline processing, we
use a non-linear optimization based [21] whole-body inverse
kinematics (IK) solver to generate balanced samples on-the-
fly. Thus, the proposed method can be easily applied to
different humanoid robot platforms without extensive pre-
processing and setup. We evaluate the proposed method on
a 36 DoF Boston Dynamics Atlas and a 38 DoF NASA
Valkyrie humanoid robots, to show that our method is capa-
ble of generating reliable collision-free whole-body motion
for a generic humanoid. We also evaluate the difference
between sampling in end-effector and configuration spaces
for different scenarios, and compare the planning time and
trajectory length to find an optimal trade off between ef-
ficiency and optimality. In particular, we apply our work
to solve practical reaching tasks on the Valkyrie robot, as
highlighted in Fig. 1, showing that the proposed method can
generate reliable whole-body motion that can be executed on
full-size humanoid robots.

II. PROBLEM FORMULATION

Let C € RY*6 be a robot’s configuration space, where
N is the number of articulated joints and the additional 6
DoF represents the unactuated virtual joint that connects the
robot’s pelvis (Tperwis) and the world W € SE(3). Letq € C
be the robot configuration state, Cpgiance C C the manifold
of statically balanced configurations, Cfr.. C C the manifold
of collision free configurations and Cyaiiq = Chatance N Cree
the valid configuration manifold.

For humanoid robots, valid trajectories can only contain
states from valid configuration manifold, i.e. qjo.7] C Coalid-
Generating collision free samples is straightforward by using
random sample generators and standard collision checking
libraries. However, generating balanced samples is non-
trivial, where a random sampling technique is incapable
of efficiently finding balanced samples on the low dimen-
sional manifold Cpgiance by sampling in high dimensional
configuration space C. Guided sampling or pre-sampling
process is required for efficient valid sample generation.
In our approach, a whole-body inverse kinematic solver is
employed to produce statically balanced samples. The static
balance constraint is a combination of constraints on feet and
CoM poses, i.e. the static balance constraint is considered
as satisfied when the robot’s feet have stable contact with
the ground and the CoM ground projection stays within the
support polygon spanned by the foot contact points. In our
case, we only consider scenarios where both feet are in
contact with the ground, however, as long as the contact
information is given, the method stays the same for whether
only one or multiple end-effectors are in contact with the
environment.

A. Whole-body Inverse Kinematics

Given a seed configuration Qg..q and nominal config-
uration qpomine; and a set of constraints C, an output
configuration that satisfies all the constraints can be generally
formulated as:

q* = IK(qseed7 qnominals C) (1)

The set of constraints for a whole-body humanoid robot
may include single joint constraints, such as position and
velocity limits for articulated joints, it may also include
workspace pose constraints, e.g. end-effector poses, centre-
of-mass position, etc. In the rest of the paper, unless specified
otherwise, we assume the quasi-static balance constraint
and joint limits constraints are included in C by default.
We formulate the IK problem as a non-linear optimization
problem (NLP) of form:

(31>k = arg minqeRN-Hi Hq — Qnominal ||éq (2)
subject to b; <q<b, (3)
¢i(q) <0,¢; €C )

where (), >= 0 is the weighting matrix, b; and b, are
the lower and upper joint bounds. We use a randomly
sampled state as the seed pose Qseeq. We then use this
pose as the initial value for the SQP solver [22]. Depending
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Fig. 2: Instead of developing new algorithms, we mod-
ify those underlying components in SBP solvers to make
standard algorithms be capable of solving motion planning
problems for humanoid robots.

on the implementation of the SBP algorithm, we either
choose qpomina; to be the current robot state or one of the
neighbouring poses drawn from the pool of candidate poses
already explored by the SBP algorithm.

B. Sampling-based Motion Planning

Let x € X be the space where the sampling is carried out.
The planning problem can be formulated as

qjo:7] = Planning(Rob, Env, x, x7) (5)

where Rob is the robot model and Env is the environment
instance in which this planning problem is defined. xy and
x are the initial and desired states.

In order for SBP algorithms to be able to plan motions
for humanoid robots, we need to modify the following
components that are involved in most algorithms as shown
in Fig. 2: the space X where the sampling is carried out;
the strategies to draw random samples; and the interpolation
function which is normally used in steering and motion
evaluation steps. In the next section, we will discuss the
details of modifications we applied on those components for
scaling standard SBP algorithms to humanoids.

III. SAMPLING-BASED PLANNING FOR HUMANOIDS

We separate the work into two parts, configuration space
sampling and end-effector space sampling. In configuration
space sampling approach, the state is represented in RV+6
space with joint limits and maximum allowed base movement
as the bounds, the sampling state is identical to robot config-
uration, i.e. x = q € C. For reaching and grasping problems,
one might be interested in biasing the sampling in the end-
effector related constraints, e.g. to encourage shorter end-
effector traverse distance. The end-effector space approach
samples in SE(3) space with a region of interests around
the robot as the bounds, the state is equivalent to the end-
effector’s forward kinematics, i.e. x = ®(q) € W where
®(-) is the forward kinematics mapping. However, the final
trajectories are represented in configuration space, thus we
associate a corresponding configuration for each end-effector

Algorithm 1 Humanoid Configuration Space SBP
sampleUniform()

1: succeed = False

2: while not succeed do

3: Qrand = RandomConfiguration()

4 Qrand; succeed = IK(QTanda QTandv C)
return q,qnq

sampleUniformNear(q,cq, d)

1: succeed = False
2: while not succeed do
3: A « Zeros(N + 6)

4 while not succeed do

5 Qrand = RandomNear(Qunear, d)

6: Set constraint ||Qrand — Qrand||w < A
7 Qrand succeed = IK(EITandu Qnear; C)
8 Increase A

9 if distance(Qrand, Qnear) > d then

10: succeed = False

return q,qnq

interpolate(q,., qs, d)
. Qint = InterpolateConfigurationSpace(Qq, qp, d)
succeed = False
A « Zeros(N + 6)
while not succeed do
Set constraint ||qine — Qint||lw < 4
Qint, succeed = IK (Qint, da, C)
Increase A
return q;,;

A U o

space state to avoid ambiguity and duplicated calls to the IK
solver.

A. Configuration Space Sampling

Algorithm 1 highlights the components’ modifications
required for sampling in configuration space:

1) Sampling Strategies: For sampleUniform(), we first
generate random samples from X and then use full-body IK
solver to process the random samples to generate samples
from the balanced manifold Xpq0nce

Qrand = [K(éh"andy (im,nd; C) (6)

where Q,qnq € X is a uniform random configuration and
Arand € Xpalance 18 random sample from the balanced man-
ifold. We use q,qnq as nominal pose since we want to gen-
erate random postures rather than postures close to other al-
ready existing samples. This is to indirectly encourage explo-
ration of the null-space of the task. The constraint set C con-
tains the static balance and joint limit constraints. When sam-
pling around a given state (sample UniformNear(Qunear, d)),
we first get a random state Qqnq that is close to Qpeqr
within distance d. The IK solver is invoked with q,q,q as
the seed pose, and Q.. as the nominal pose. An additional



configuration space constraint is added to the constraint set

||qrand - QTand”W S A (7)

where A € RN*6 is a tolerance vector initially set to
zero. In most cases the system will be over constrained,
in which case we need to increase the tolerance to ensure
balance. Normally, the lower-body joints are neglected first,
i.e. increasing corresponding w;, meaning that we allow the
lower-body joints to deviate from q4,q in order to keep the
feet on the ground and maintain balance. We use X;cqr as
the nominal pose since later on the random state is likely to
be appended tO Queqr, and one wants the random state be
close to the near state. The new sample is discarded if the
distance between qpeq- and qrqng €xceeds the limit d.

2) Interpolation: In order to find a balanced state inter-
polated along two balanced end-point states, we first find the
interpolated, likely to be un-balanced state

Qint = da + d|lqp — qall- (8)

A similar configuration space constraint to (7) is applied to
constrain the balanced interpolated state q;,: close to q;n¢

\th - QintH S A (9)

The two end-point states q, and q; are valid samples
generated using our sampling strategies. Due to the convex
formulation of the balance constraint, a valid interpolated
state is guaranteed to be found. It is worth mentioning that
in some cases the interpolation distance equation no longer
holds after increasing the tolerance, i.e. w # d.
However, this is a necessary step to ensure that the balance
constraint are satisfied.

B. End-Effector Space Sampling

Algorithm 2 highlights the components’ modifications
required for sampling in end-effector space:

1) Sampling Strategies: It is straight forward to sample in
SE(3) space, however, it is non-trivial to sample balanced
samples from the Xpqiancc manifold. For sample Uniform(),
we first randomly generate SF(3) state X,q,4 Within a region
of interest in front of the robot. The whole-body IK is
invoked with an additional end-effector pose constraint

||irand - (I)(qrand)“ <0

The sampler keeps drawing new random states X,,nq until
the SQP solver returns a valid output q*. The valid ran-
dom state X,4,4 can be calculated using forward kinemat-
ics, e.g. Xrana = P (q*). The same procedure applies to
sampleNear(Xpear, d), but using X,,.q,- as the seed configu-
ration.

2) Interpolation: Similar to sampling near a given state,
for interpolation in end-effector space, we first find the
interpolated state X;,; € SE(3) and add the following term
into constraint set

(10)

[%int — @(a)]| < B (1)

where B € RS is a tolerance vector initially set to zero.
If the system is over constrained after adding end-effector

Algorithm 2 Humanoid End-Effector Space SBP
sampleUniform()

1: succeed = False

2: while not succeed do

3 Xrand = RandomSE3()

4: Set constraint ||X,qnd — ®(Qrand)|| <0
5 Qrand; succeed = [K((_Iranda Cl'randa C)
6

: Xrand = (I)(qrand)
return X,qnd, Qrand

sampleUniformNear(x ., d)
1: succeed = False
2: while not succeed do
3 Xrand = RandomNearSES (Xpeqr, d)
4 Set constraint ||X,;qnd — P(Qrand)|] <0
5 Qrand s succeed = IK(qranda Qnear C)
6: Xrand = Xrand

return Xrand s Arand

interpolate(x,, x;, d)

Xint = InterpolateSES (x4, Xy, d)

succeed = False

B <« Zeros(SE3)

while not succeed do
Set constraint ||X;n,: — P(qint)|| < B
Qint, succeed = IK (qq, qa, C)
Increase B

Xint = (I)(th)

return X;.:, qint

A o e

pose constraint, we need to selectively relax the tolerance
for different dimensions (x,y, z, roll, pitch, yaw) until the
IK solver succeeds. Then we reassign the interpolated state
using forward kinematics, Xt = P(Qins)-

3) Multi-Endeffector Motion Planning: Some tasks re-
quire coordinated motion involving multiple end-effectors,
e.g. bi-manual manipulation and multi-contact motion. It
is obvious that, from a configuration space point of view,
there is no difference as long as the desired configuration
is specified. It is also possible for the end-effector space
sampling approach to plan motion with multiple end-effector
constraints. Let y; € SE(3) be the desired pose constraints
for end-effector k € {1,..., K}. A meta end-effector space
X € R®*K can be constructed to represent the sampling
space for all end-effectors. Similar sampling and interpo-
lation functions can be implemented by constructing extra
constraints for each end-effector k.

IV. EVALUATION

We aim to generalize the common components of
sampling-based motion planning algorithms for humanoid
robots so that existing algorithms can be used without
extra modification. We implemented our approach in the
EXOTica motion planning and optimization framework [23]



TABLE I: Planning time (in sec) of empty space reaching
problem utilising different algorithms, in seconds. The result
is averaged over 100 trails.

. Sampling Space
Algorithms End-Effector Space [ Configuration Space
RRT 25.863 £ 22.894 1.4129 4+ 1.4466
PRM 4.2606 + 3.0322 0.5912 4+ 0.5912
EST 28.055 £ 18.270 0.3112 +0.3112
BKPIECE 5.3989 £ 5.9470 0.1781 + 0.0332
SBL 3.0602 £ 0.9859 0.2804 £ 0.0480
RRT-Connect 2.8228 £+ 0.3412 0.1853 £ 0.0450

Fig. 3: Evaluation tasks, from left to right: task 1, target
close to robot; task 2, target far away from robot; and task
3, target behind bar obstacle.

as a humanoid motion planning solver, which internally
invokes the SBP planners from the Open Motion Planning
Library (OMPL, [24]). We have set up the system with
our customized components, and evaluated our approach on
the following six representative algorithms: RRT [9], RRT-
Connect [11], PRM [10], BKPIECE [14], EST [12]) and SBL
[25]. The evaluations were performed in a single thread with
a 4.0 GHz Intel Core i7-6700K CPU.

A. Empty Space Reaching

In the first experiment, we have the robot reach a target
pose in front of the robot in free space, where only self-
collision and balance constraints are considered. This is a
sanity check to show that the proposed method can be used
robustly across different planning algorithms to generate
trajectories for humanoid robots. We solve the reaching
problem using the six testing algorithms in two different
sampling spaces, each across 100 trials. The results are
shown in Table I. Although the planning time varies across
different algorithms and sampling spaces, the result shows
that standard planning algorithms are able to generate motion
plans for humanoid robots using our method. As expected,
bi-directional algorithms are more efficient than their unidi-
rectional variants. Also, sampling in configuration space is
much more efficient than in end-effector space due to the
higher number of IK calls for the later case.

B. Collision-free Reaching

We setup three different scenarios, from easy to hard, as
illustrated in Fig. 3, to evaluate the performance of different
algorithms in different sampling spaces. Unfortunately, the
evaluation suggests that standard unidirectional algorithms
are unable to solve these problems (within a time limit of 100
seconds). Without bi-directional search, the high dimensional

(b) Trajectories generated using end-effector space sampling.

Fig. 4: Whole-body motion plans generated using different
sampling spaces. The task is identical for each column. In
general, configuration space sampling leads to shorter tra-
jectory length; end-effector space sampling leads to shorter
end-effector traverse distance.

humanoid configuration space is too complex for sampling-
based methods to explore. Table II highlights the results
using four different bidirectional approaches. Note that when
sampling in end-effector space, only RRT-Connect is able to
find a valid solution in the given time, other bidirectional
search algorithms like BKPIECE and SBL are also unable to
find valid trajectories. The result indicates that RRT-Connect
sampling in configuration space is the most efficient and
the most robust approach for solving humanoid whole-body
motion planning problems. It requires the least exploration,
thus bypassing expensive online IK queries. Algorithms like
BKPIECE and SBL use low-dimensional projections to bias
the sampling, however, the default projections which are
tuned for mobile robots and robotic arms do not scale up
to high DoF humanoid robots, which leads to long planning
time and trajectories with high costs. This can be improved
by better projection bias, but it is non-trivial to find a suitable
bias without fine tuning. Also, the trajectories generated
using RRT-Connect are shorter, meaning that the motion is
more stable and robust. It is worth mentioning that RRT-
Connect takes longer time to plan when sampling in the
end-effector space than it does in the configuration space,
but the planned trajectories have shorter end-effector and
CoM traverse distances. In some scenarios where planning
time is not critical, one can choose to use RRT-Connect
in end-effector space to generate trajectories with shorter
end-effector traverse distance. These results also suggest
that the whole-body IK computation dominates the planning
time. This is in contrast with classical SBP problems where
collision-detection is the most time consuming component.
However, the IK solver is necessary for maintaining balance,
as shown in Fig. 5, where the trajectories’ CoM projections



TABLE II: Evaluation of whole-body collision-free motion planning. RRT-Connect, sampling in end-effector space, all
other methods sampling in configuration space. C cost is the configuration space trajectory length, WV cost is the end-effector
traverse distance in workspace, CoM cost is the CoM traverse distance in workspace. No. evaluation shows the number of
state evaluation calls, i.e. evaluate if a sampled/interpolated state is valid. No. IK indicates the number of online whole-body
IK calls, and IK time is the total time required for solving those IK, which is the most time consuming element. The result
is averaged over 100 trails.

Tasks Algorithms Planning time (s) | C cost (rad.) | W cost (m) | CoM cost (m) | No. evaluation | No. IK IK time (s)
BKPIECE. 42,5 + 264 7.37 +£2.43 | 2.10 £ 0.80 0.24 + 0.10 1946 + 1207 2598 + 1582 | 41.4 £+ 25.7
Task 1 SBL. 27.8 £ 8.59 625 £ 1.06 | 2.14 £ 0.71 0.23 £ 0.06 1313 £ 418 1508 + 445 27.0 £ 833
RRT-Connect, 991 + 4.80 293 + 096 | 0.58 £+ 0.11 0.07 + 0.02 597 + 354 727 £ 387 9.51 + 4.58
RRT-Connect, 1.53 + 0.80 271 £ 0.68 | 099 + 0.23 0.11 £ 0.03 95 + 54 118 £+ 64 1.48 + 0.77
BKPIECE. 40.5 + 21.7 6.59 + 2.43 1.95 £+ 0.59 0.27 £ 0.09 1911 4+ 970 2473 + 1254 | 39.4 £+ 20.1
Task 2 SBL. 222 + 9.51 534 +£2.00 | 1.79 £ 0.80 0.24 + 0.09 1089 £ 472 1259 + 547 21.5 +£9.23
RRT-Connect, 124 £ 6.65 412 £2.02 | 0.77 + 0.08 0.09 £ 0.04 656 + 405 826 £ 458 11.9 £ 6.41
RRT-Connect, 225 £ 0.85 329 £ 1.14 | 1.20 £ 0.33 0.14 £ 0.05 106 £ 42 166 £ 59 2.19 £ 0.83
BKPIECE, 45.7 £ 19.8 749 +£2.52 | 1.96 £ 0.73 0.25 + 0.08 2057 £ 949 2758 + 1166 | 44.5 + 19.3
Task 3 SBL. 33.8 £ 222 8.68 +2.26 | 2.10 £ 0.44 0.28 £ 0.11 1414 £+ 950 1756 + 1151 | 33.0 £ 21.6
RRT-Connect, 253 £ 139 7.19 £493 | 092 £0.13 0.16 £ 0.05 1031 £ 532 1436 + 720 24.6 £ 13.7
RRT-Connect, 345 + 0.77 4.68 +£ 059 | 1.38 £0.12 0.14 + 0.03 165 + 49 200 £+ 53 3.36 £ 0.75
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(a) Reaching motion on the NASA Valkyrie robot.

¥

(b) Reaching motion on the Boston Dynamics Atlas robot.

Fig. 5: Collision-free whole-body motion generated in different scenarios with different robot models. The corresponding
CoM trajectories are illustrated in the second row (red dots). The framework is setup so that one can easily switch to new

robot platforms without extensive preparing procedures.

are within the support polygon.

In more complex scenarios, such as reaching through
narrow passages and bi-manual tasks, most algorithms fail
to generate valid trajectories apart from RRT-Connect. As
mentioned, some algorithms’ performance depends on the
biasing methods, e.g. projection bias and sampling bias.
However, it is non-trivial to find the appropriate bias for
humanoids that would generalize across different tasks.
Fig. 5 highlights some examples of reaching motion in more
complex scenarios with different robot models. As stated
earlier, this work focuses on generalising SBP algorithms
for humanoids, where as one can easily setup the system
on new platforms as long as the robot model is given. For
instance, one can easily switch from Valkyrie (Fig. 5a) to
Atlas (Fig. 5b) in minutes without extensive pre-processing
and setup procedures.

In order to test the reliability and robustness of the
proposed method, we applied our work on the Valkyrie
robot accomplishing reaching and grasping tasks in different
scenarios, as highlighted in Fig 6. During practical experi-
ments, the collision environment is sensed by the on—board
sensor and represented as an octomap [26]. The experiment
results show that our method is able to generate collision-free

whole-body motion plans that can be executed on full-size
humanoid robot to realise practical tasks such as reaching and
grasping. A supplementary video of the experiment results
can be found at https://youtu.be/AZQY_QOX0Pw.

V. CONCLUSION

In this paper we generalise the key components required
by sampling-based algorithms for generating collision-free
and balanced whole-body trajectories for humanoid robots.
We show that by using the proposed methods, standard SBP
algorithms can be invoked to directly plan for humanoid
robots. We also evaluate the performance of different al-
gorithms on solving planning problems for humanoids, and
point out the limitations of some algorithms. A variety of
different scenarios are tested showing that the proposed
method can generate reliable motion for humanoid robots
in different environments. This work can be transferred to
different humanoid robot models with easy setup procedure
that can be done in very a short period of time, without
extensive pre-processing for adapting the existing algorithms
to different robots, as we have tested on the 36 DoF Boston
Dynamics Atlas and the 38 DoF NASA Valkyrie robots.
In particular, we applied this work on the Valkyrie robot



Fig. 6: Collision-free whole-body motion execution on the NASA Valkyrie humanoid robot. In each row, the first figure

highlights the motion plan, followed by execution snapshots.

accomplishing different tasks, showing that the proposed
method can generate robust whole-body motion that can be
executed on real robots.

The whole-body inverse kinematics is crucial in terms of
guaranteeing balance and smoothness, however, the result
in Table II shows that the IK solver dominates over 95%
of the online computation time. Although it depends on
the implementation and underlying algorithms of the IK
solver which is not the focus of this paper, we intend to
investigate faster IK implementation to bootstrap sampling
and interpolation. This will make the state space exploration
more efficient, so that other standard algorithms may be able
to find valid solutions within the same time window.
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