
Learning Whole-body Motor Skills for Humanoids

Chuanyu Yang, Kai Yuan, Wolfgang Merkt, Taku Komura, Sethu Vijayakumar, Zhibin Li

Abstract— This paper presents a hierarchical framework for
Deep Reinforcement Learning that acquires motor skills for a
variety of push recovery and balancing behaviors, i.e., ankle,
hip, foot tilting, and stepping strategies. The policy is trained
in a physics simulator with realistic setting of robot model and
low-level impedance control that are easy to transfer the learned
skills to real robots. The advantage over traditional methods
is the integration of high-level planner and feedback control
all in one single coherent policy network, which is generic
for learning versatile balancing and recovery motions against
unknown perturbations at arbitrary locations (e.g., legs, torso).
Furthermore, the proposed framework allows the policy to be
learned quickly by many state-of-the-art learning algorithms.
By comparing our learned results to studies of preprogrammed,
special-purpose controllers in the literature, self-learned skills
are comparable in terms of disturbance rejection but with
additional advantages of producing a wide range of adaptive,
versatile and robust behaviors.

I. INTRODUCTION

Legged robots have great potential for being deployed in
environments where wheeled robots are limited, such as ob-
stacle obstructed terrain as well as narrow and elevated sur-
faces (e.g., stairs). However, in contrast to wheeled or tracked
robots, humanoids are intrinsically unstable and require ac-
tive control to balance due to their limited support area, high
center of mass, and limited actuator capabilities. Therefore,
the range of possible scenarios in which humanoids can be
deployed is mostly limited by the humanoids’ ability to main-
tain balance and deal with disturbances and uncertainties.
Balance can therefore be considered as one of the core skills
for humanoid robots and locomotion.

Classical control methods propose a wide range of balance
recovery algorithms, which however lack in the universality
of their application. In order to deal with a wide range of
pushes, different control strategies need to be applied and
traditionally a switching between controllers for the given
situation is needed. Generally, different sets of parameters
are used for the four main push recovery strategies: ankle,
hip, foot-tilting, and stepping (cf. Fig. 1).

Methods from machine learning on the other hand provide
a promising alternative as they can incorporate multiple push
recovery skills without the need for hand-tuned gains. Their
use is motivated by three main factors:

First, supplementing existing control strategies with learn-
ing methods allows dealing with scenarios that are hard to

This research is supported by the EPSRC UK RAI Hub in Future AI
and Robotics for Space (FAIR-SPACE, project ID: EP/R026092/1) and EU
H2020 project Memory of Motion (MEMMO, project ID: 780684).

All authors are with the Institute for Perception, Action, and Be-
haviour, School of Informatics, The University of Edinburgh (Informatics
Forum, 10 Crichton Street, Edinburgh, EH8 9AB, United Kingdom). Email:
chuanyu.yang@ed.ac.uk.

� �

��� ������ ���

Fig. 1: Learned push recovery behavior: (a) ankle strategy,
(b) hip strategy, (c) foot-tilting strategy, (d) stepping strategy.

engineer in a traditional sense such as sudden, high impact
forces and discrete, sudden switches of contact.

Second, in contrast to planning and control algorithms
that demand high computational power to run at or close
to real-time, e.g. Model-Predictive Control, the computation
for machine learning approaches can be outsourced offline
[1]. I.e., the computation for Deep Reinforcement Learning
(DRL) can be off-loaded into the neural network training
phase. By doing so, faster online performance for high
dimensional control systems such as humanoids can be
achieved.

Last, in recent years, DRL has been shown to be capa-
ble of solving complex manipulation and locomotion tasks
that involve learning a control policy in high-dimensional
continuous observation and action spaces [2]–[4]. Instead of
manually tuning the control parameters, a feasible policy is
learned through interaction with the environment.

While there exist various studies using DRL to learn
bipedal locomotion for humanoids [5]–[7], the used robot
models leverage simplified dynamic and collision models and
environments in order for faster than real-time simulations
at the cost of less realistic simulations. The motivation of
this paper is to learn locomotion skills using a realistic
robot model obtained from system identification in a realistic
simulation environment in order to apply the learned skills
on the real robot. We leverage recent advances in DRL to
design a unified balance recovery controller which is able to
generate sequences of actions that perform similar to or even
exceed traditional methods with respect to their disturbance
rejection ability. Our work has the following contributions:

1) Application of DRL on an accurate robot model of the
Valkyrie platform with realistic settings for simulation.

2) Design of a learning framework that generates a generic
policy. This policy captures a variety of sensor-motor
synergies and various control strategies emerge in a

2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)
Beijing, China, November 6-9, 2018

978-1-5386-7283-9/18/$31.00 ©2018 IEEE 776

Fig. 2: Snapshots of Valkyrie recovering from an impulse at the shin of 108Ns, which is a test scenario not encountered during
training. The learned policy automatically generates a stepping behavior (cf. https://youtu.be/43ce2cLV0ZI).

unified manner without the need of multiple controllers
and the related switching mechanism.

3) Proposal of a balance recovery specific reward design
and training settings of disturbances. These allow the
exploration of versatile motions and as a result human-
like balancing behaviors, such as foot-tilting and step-
ping, emerge naturally.

4) Benchmarking the learned policy against control meth-
ods. The learned policies generate balance recovery
strategies which reject impulses in a similar (or even su-
perior) magnitude as traditionally designed controllers.

This paper is organized as follows. A brief review on
conventional push recovery methods and DRL is presented
in Section II. Background information on some concepts of
DRL and push recovery is explained in Section III. The
proposed methodology is elaborated in Section IV. The
obtained results are demonstrated and discussed in Section
V. Finally, a conclusion is drawn in Section VI.

II. RELATED WORK

A. Conventional Push Recovery methods

Over the past two decades, remarkable progress in the
field of push recovery for humanoid robots has been made.
Without the use of arms, humanoids can leverage four lower
body balancing strategies: ankle, hip, stepping, and foot-
tilting. The first three strategies, controlling ankle torque,
angular momentum around the Center of Mass (CoM), and
the timing and position of steps, are analyzed with respect
to their ability to reject disturbances in [8]. A control
framework for the foot-tilting strategy has been proposed in
[9] demonstrating a humanoid’s ability to use foot-tilting for
push recovery. Traditionally control schemes can be divided
into predictive schemes which calculate reference motions,
and reactive schemes which respond to sudden disturbances.

A Model Predictive Control (MPC) scheme that constrains
the Center of Pressure to be within the Support Polygon has
been proposed in [10]. Strategies involving modulating the
Angular Momentum to reactively deal with disturbances have
been formally analyzed in [11], [12]. Due to the limited size
of the contact area, i.e. the foot size, stepping strategies have
been proposed [13], [14]. This idea was formalized as the
Capture Point (CP), the point on which one needs to step in
order to come to a complete halt [11]. Enlarging the support
area by stepping has been extended to multi-contact push
recovery scenarios in [15], [16]. Methods for balancing on

inclined slopes has also been proposed [17]. Lastly, strategies
modulating the height of the CoM in order to compensate for
disturbances have been proposed in [18]. This CoM height
modulation can be achieved by either lengthening the leg or
in form of foot tilting [9].

B. Deep Reinforcement Learning of Locomotion

There exists various successful studies using model-free
DRL to solve bipedal locomotion tasks in 3D simulation
environments. Schulman et al. proposed a DRL algorithm,
Proximal Policy Optimization (PPO), which was applied
to successfully learn a locomotion policy that is capable
of heading towards a target location in the Roboschool
humanoid simulation environment [4]. PPO, together with
Deep Deterministic Policy Gradient (DDPG) [3] and Trust
Region Policy Optimization (TRPO) [2], are the most com-
monly used state-of-the-art DRL algorithms for continuous
observation-action space control. Further extensions include
a parallel computing version of PPO, Distributed Proximal
Policy Optimization (DPPO) [19], which was applied on
a humanoid and successfully learned dynamic and diverse
parkour movements for the humanoid character.

Various frameworks have been proposed to allow the DRL
agent to learn a policy that generates human-like locomotion
behavior for bipedal locomotion tasks. Merel et al. proposed
a framework that uses generative adversarial imitation learn-
ing [20] to enable the network to learn a policy that produces
human-like locomotion gait using limited demonstrations
from motion capture data [21]. Peng et al. proposed a
framework that incorporated imitation learning by reshaping
the reward through the introduction of an imitation term that
provides higher reward when the motion is closer to the
reference motion capture data [22].

III. BACKGROUND

A. Software Setup

The simulation environment of the Valkyrie robot is built
using PyBullet [23] (Fig. 2). The robot model used in the
simulation is the NASA Valkyrie robot [24] with realistic
inertia, center of mass, and joint actuation limits. Self-
collisions are enabled in the simulation. The DRL algorithm
is built using Tensorflow [25].

B. Deep Reinforcement Learning

For learning a suitable policy, Deep Reinforcement Learn-
ing, particularly model-free policy gradient methods, are

777

used. Policy gradient algorithms operate by maximizing the
direct sum of rewards with reference to a stochastic policy.
The policy gradient algorithms used in this work are the
TRPO [2], PPO [4], and DDPG [3]. Due to resulting in the
best and most robust policy, the TRPO algorithm will be
outlined in the following.

1) Trust Region Policy Optimization: In practice, policy
gradient methods suffer from high variance which can lead
to fluctuations in the performance of the policy between
iterations. This problem of instability during training is
remedied by introducing a trust region to the numerical
optimization which takes a step in the improving direction
within a determined trust region. By constraining the amount
of changes to the parameters, measured by the Kullback-
Leibler (KL) divergence, TRPO guarantees a theoretical
monotonic performance improvement of the reward.

For every parameter update iteration, TRPO performs
several rollouts and stores the state st, action at and reward
rt into a batch D until enough data samples are collected,
which will then start the update process. During the update
process, TRPO updates the policy parameters by minimizing
a surrogate loss function while constraining the KL diver-
gence between the new and old policies �θ, �θold to remain
within a trust region:

min
θ
Lθold(�) = −Et

[
�θ(at|st)
�θold(at|st)

At

]
(1)

subject to Et [KL [�θold(·|st)�θ(·|st)]] ≤ �; (2)

where � is the hyperparameter that determines the trust
region, At = Rt−V (st) is the advantage which is calculated
by subtracting the return with a baseline. A value estimation
V (st) provided by a critic is used as the baseline.

2) Discounted return: The total return is used as an
evaluation of performance and is determined by calculating
the discounted reward,

Rt =
T−t∑
l=0

lrt+l; (3)

where T is the total number of samples in an episode and
is the discount factor. The half-life of future rewards is used
as a reference to decide the value of the discount factor .
For balancing, a time horizon between 0.5s and 2s is close.
With a frequency of 25Hz, 0.5s equates to 13 time steps. We
choose the discount value in a way that the half-life of the
future reward occurs at 0.5s, meaning that the accumulated
discount factor equates to 0.5 at 13 time step 13 = 0:5,
hence ≈ 0:95.

3) Generalized Advantage Estimation: With the policy
gradient method and a stochastic policy, we obtain an un-
biased estimate of the gradient of the expected total reward,
however the estimated policy gradient has high variance.
An effective variance reduction scheme for policy gradients
called Generalized Advantage Estimator (GAE) was pro-
posed in [26]. GAE interpolates between a high bias and
low bias estimator through the parameter � ∈ [0; 1]. One can

� �

����������
	�
����	�����

���������
������������

����������
���
�����������
�����

��������� ����

!������� ����"��

#����
$���������

$���
��%
�

$���������&�������
'����

Fig. 3: Hierarchical control system overview [27]

adjust the bias/variance trade-off by tuning �. The GAE for
the parameters ; � at time t is:

A
GAE(γ,λ)
t :=

∞∑
l=0

(�)l�Vt+1

�Vt+1 = rt + V (st+1)− V (st):

(4)

C. Capture point

The Capture point (CP) describes the point on the ground
on which the robot should step on in order to come to a
complete rest [11], and is defined as:

xCP = xCoM + _xCoM

√
zc
g
; (5)

where xCP is the CP, xCoM; _xCoM is the CoM position and
velocity, zc its height, and g the gravitational constant.

When the CP is within the support polygon, the robot
does not need to perform any footstep to maintain balance.
Knowing the feet dimensions and therefore the support poly-
gon, the theoretical maximum impulse which can be rejected
without foot-stepping can be approximated as follows [11]:

Jreject = m

√
g

zc
�COP; (6)

where �COP is the distance between the CoM and the closest
border of the Support Polygon in the direction of the push.
For the nominal, upright-standing pose the dimensions of
the Support Polygon of Valkyrie is 0:26m × 0:38m, the
CoM height is at 1:1m , the mass of the Valkyrie robot is
137kg. Equation (6) yields an approximate maximal impulse
of 53Ns in the sagittal plane and 78Ns in the lateral plane
for �COP = [0:13m; 0:19m].

IV. METHODOLOGY

A. Hierarchical control framework

We designed our control framework to have a hierarchical
structure (Fig. 3). A hierarchical structure allows implemen-
tation of two (high and low-level) layers that are indepen-
dent from each other and can be designed and calibrated
separately. The high-level control works under a frequency
of 25Hz while the low-level control works at 500Hz. The
high-level control is responsible for generating joint angles
for a desired motion and the low-level control is responsible
for translating the joint angles into joint torques.

B. Joint-level control of the robot

Instead of directly controlling the joint motor torque, a PD
controller is used to translate joint angles into joint torques.
A PD controller resembles the biomechanics of a system in

778

a sense that it has spring damping properties. A comparison
between directly using torques and a PD controllers to
compute the torques for certain motor tasks was conducted
in [28] and showed that using a PD controller improved
learning speed and overall performance. The resulting torque
is computed as:

u = Kp(qtarget − qmeasured)−Kd _qmeasured; (7)

where Kp;Kd are the PD gains respectively, qtarget is the
targeted joint angle, and qmeasured; _qmeasured are the measured
joint angles and velocities respectively..

C. Observation space and action space

Input states are chosen in a way such that they can be
acquired by sensors on the robot with minimal amount of
computation. Immeasurable states are inferred or estimated
by the Neural Network. All the sensory information provided
as the observational input for the policy is heading-invariant.
For balancing, the rotation along the direction of the gravity
vector is irrelevant to the balancing state, therefore infor-
mation about the heading is not needed as feedback, i.e.
the policy will perform the same action regardless of global
yaw orientation. In order to make the state observation
heading invariant, we preprocessed the state by performing
transformation of the observations along the gravity axis.

The state S ∈ R47 consists of joint angle and velocity,
pelvis states (translational and angular velocity, orientation),
CoM states (translational velocity and position w.r.t. pelvis),
ground contact force, torso position w.r.t. pelvis, and foot
position w.r.t pelvis. The observation states are sampled
at a frequency of 500Hz and are filtered by a first-order
Butterworth filter with a cut-off frequency of 10Hz.

Under consideration of computation efficiency, we min-
imize the size of action space. A minimum of 11 joints
that includes only roll and pitch joints are sufficient for
balancing. The action space A ∈ R11 of the policy describes
the motion of the joint angles. The upper body joints are
locked in a nominal position, while for the lower body, only
the pitch joint and roll joint are controlled. The controlled
joints therefore are: torso pitch, left and right hip pitch &
roll, knee pitch, and ankle pitch & roll.

D. Design of reward function

The design of the reward function is a crucial part in re-
inforcement learning as the reward governs the outcome be-
havior. The reward design follows a similar design rule as in
[27]. Balancing can be divided into four subtasks: regulating
upper body pose, regulating CoM position, regulating CoM
velocity, and regulating ground contact force. The individual
reward is calculated using ~ri = exp(−�i(xtarget − x)2),
with xtarget as the desired value, x as the real value, and
�i as the normalization factor. These are then weighted by
wi. Furthermore, additional penalty terms are added: ground
contact regulation, loss of contact with the ground, and when
other parts of the body other than the foot make contact with
the ground. We also apply a penalty for the control effort

used. The overall reward can be viewed as a sum of the
individual reward terms:

r =rpose + rCoM pos + rCoM vel + rGRF+

rcontact + rpower:
(8)

1) Upper body pose modulation: The upper body pose
is represented by the pitch and roll angle of the torso and
pelvis. The desired orientation for the pitch roll angle for
both pelvis and torso is 0, which is the orientation of the
upper body when it is upright:

rpose =wφtorsoPitch ~rφtorsoPitch + wφpelvisPitch ~rφpelvisPitch+

wφtorsoRoll ~rφtorsoRoll + wφpelvisRoll ~rφpelvisRoll :
(9)

2) CoM position modulation: The reward term for CoM
modulation is decoupled into horizontal and vertical compo-
nents. For the horizontal CoM position, the target position
is the center of the support polygon to provide maximum
disturbance compensation. For the vertical CoM position, the
robot should stand upright and maintain a certain height,

rCoM pos = wxyCoM ~rxyCoM + wzCoM ~rzCoM : (10)

3) CoM velocity modulation: Similar to the CoM posi-
tion, the reward for CoM velocity is decoupled into two
components: velocity in the horizontal and vertical planes.
The CoM velocity is represented in the world frame. The
desired vertical CoM velocity is 0 as we want to minimize
vertical movement, while the desired velocity for horizontal
CoM velocity is derived from capture point. The Capture
Point is only valid when the robot has contact with the
ground with no slipping, therefore when the robot is in the
air, the reward term for horizontal CoM velocity ~rẋyCoM

is
deemed invalid and is set to 0:

rCoM vel =

{
wẋyCoM

~rẋyCoM
+ wżCoM ~rżCoM ; foot contact

wżCoM ~rżCoM ; no foot contact:
(11)

4) Contact force modulation: The force has to be evenly
distributed between both feet for a stable robust balance. The
total mass of 137kg yields a force of 671.3N for each foot:

rGRF = wFleft
~rFleft

+ wFright
~rFright

: (12)

5) Ground contact: When the robot is standing, only the
feet are in contact with the ground, therefore a penalty is
introduced whenever both feet lose contact with the ground
or body parts other than the feet make contact with the
ground:

rcontact =

{
−2; if no foot contact with ground
−10; if upper body contact with ground:

(13)
6) Power consumption: The power consumption is calcu-

lated as follows:

rpower = wpower ·
11∑
j=0

∥∥� j · _qj
∥∥ ; (14)

with � j is the torque applied on individual joints, and _qj is
the joint velocity.

779

Fig. 4: Overview of neural network structure.

E. Network structure

The stochastic policy �θ(a|s) is represented as a condi-
tional Gaussian policy �θ(a|s) ∼ N(�θ(s); �θ). The mean
of the Gaussian policy is parametrized by a neural network
with parameters �, the covariance of the Gaussian policy is
independent from the neural network and is maintained by
a separate set of parameters �θ.

The critic Vφ parametrizes the value function with a
separate set of neural networks using parameters �. Both the
actor and the critic are parametrized by a fully connected
feedforward neural network that consists of 3 hidden layers
with 100, 50 and 25 neurons for each layer. The actor
network uses tanh activation for the hidden layers while the
critic uses ReLU activation for the hidden layers. The output
of both network is produced by linear activation.

The actor network is trained to maximize the reward
function (section IV-D), while the critic network is trained
by minimizing the loss function LV(�):

LV(�) = Et
[
(V (st)− yt)2

]
; (15)

with the discounted Return yt (eq. 3), value function V (st).

F. Exploration during training

In order to learn a policy capable of withstanding large
push disturbances, sufficient exploration during the training
phase needs to be provided. Therefore, in addition to the
stochastic policy, random forces are applied on the pelvis
during the training. From Capture Point theory, the maximum
disturbance in the sagittal plane without foot-stepping is
53Ns. The bounds of the training disturbances is chosen
to be [53 × 0:5Ns; 53 × 2Ns]. The orientation of the force
in the horizontal plane and the disturbance in the bound are
randomized. Disturbances are applied to the robot multiple
times during each trial, with 5s interval between subsequent
push disturbances for push recovery.

0 50 100 150 200 250 300 350 400
−100

0

100

200

300

400

500

600

700

Test episode

R
ew

ar
d

pe
r

ep
is

od
e

Std. Dev. Mean reward

(a) DDPG

0 50 100 150 200 250 300 350

0

200

400

600

800

Epoch

R
ew

ar
d

pe
r

ep
oc

h

TRPO std. dev. TRPO mean reward
PPO std. dev. PPO mean reward

(b) TRPO & PPO

Fig. 5: Learning curves for DDPG, PPO, and TRPO. The
performance are evaluated using the deterministic policy. The
mean of the Gaussian policy learned by PPO/TRPO is used
for evaluation. The results are averaged over 7 learning trials.

G. Learning Algorithm

Due to the structure and choice of our framework, the
learned policy is independent of the type of learning algo-
rithm. We trained a policy for maintaining balance via TRPO,
PPO, and DDPG, and found similar resulting behavior (cf.
Table I). All four balancing strategies (Fig. 1) emerges
regardless of the DRL algorithm used. However, from our
simulations, TRPO is able to achieve higher rewards and
is able to withstand higher impulses. Figure 5 shows the
learning curves for the policies learned in Table I. DDPG is
trained off-policy and utilizes a replay buffer, whereas TRPO
and PPO are trained on-policy batch-wise, which makes it
difficult to directly compare.

All three DRL algorithms are able to learn a feasible
balancing policy. The difference in performance can be
attributed to the randomness in different trials of training
and hyperparameters. Training is performed entirely on a
single Intel Core i7-6700K with 4.0 GHz and converges in
two days.

TABLE I: Maximal rejectable impulses for the various
learning algorithms without taking steps.

Maximal disturbance in Ns

Learning algorithm Sagittal Lateral

TRPO 240 78
DDPG 75 160
PPO 192 36
Baseline from (6) 53 78

V. RESULTS

In the following, a series of test scenarios are presented
to evaluate the performance of the control policy acquired
by the deep reinforcement learning agent. Furthermore, we
show its robustness to external disturbances, as well as noise
in the observation (measurement) and action (actuation)
spaces. Next, a comparison against traditional methods from
other works is made. Lastly, the physical validity of the
generated motions is analysed and verified. Please refer to the
accompanying video for the results (cf. https://youtu.
be/43ce2cLV0ZI).

780

781

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
−8

−6

−4

−2

0

2

4

6

8
·10−2

Time [s]

C
O

M
po

si
tio

n
[m

]

Sagittal: 24Ns Sagittal: 72Ns
Sagittal: 240Ns Lateral: 78Ns
Disturbance duration

(a) CoM motion over time for multiple
forces. The CoM position of the 2000N is
scaled by 0.05

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
−6

−4

−2

0

2

4

6

8

10

12

14

Time [s]

O
ri

en
ta

tio
n

[d
eg

]

Roll: sagittal 24Ns
Roll: sagittal 72Ns
Roll: sagittal 240Ns
Roll: lateral 78Ns
Pitch: sagittal 24Ns
Pitch: sagittal 72Ns
Pitch: sagittal 240Ns
Pitch: lateral 78Ns
Disturbance duration

(b) Pelvis orientation over time.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time [s]

Po
si

tio
n

[m
]

Left foot Right foot
COM Disturbance duration

(c) Foot and CoM movement for sagittal
push of 2000N .

Fig. 6: Resulting motions from impulse disturbance and balance recovery.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

−0.4

−0.2

0

0.2

0.4

0.6

Time [s]

Po
si

tio
n

[m
]

Left foot Right foot
COM Disturbance duration

(a) CoM and feet motion.

0 0.5 1 1.5 2 2.5 3 3.5
−0.4

−0.3

−0.2

−0.1

0

0.1

Time [s]

Fo
ot

[m
],

A
ng

le
s

[r
ad

]

Lfoot z Rfoot z
Lfoot roll Rfoot roll
Lfoot pitch Rfoot roll

(b) Support foot behavior (swing foot not
depicted).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

−15

−10

−5

0

Time [s]

E
ul

er
an

gl
es

[d
eg

]

Roll of the pelvis
Pitch of the pelvis
Disturbance duration

(c) Angular movement of the pelvis.

Fig. 7: Resulting motions from an impulse disturbance at the shank. The robot takes 6 steps before standing stably.

(� = 0; � = 0:5). We found that the policy is able to handle
both. The observation noise is filtered by the Butterworth
filter, while noise in the action space is handled by the
robustness of the policy.

F. Comparison against other control methods

In order to compare the results obtained from the policy
with other works, the disturbance is normalized. The applied
force needs to be put in relation with the duration of the push,
resulting in the impulse acting on the system. Furthermore,
the mass and the resulting inertia is a crucial variable to
a robot’s ability to deal with disturbances. Therefore, the
impulse is normalized by the weight of the robot.

The normalized impulse is used for comparison between
the controllers of other works [10], [13], [29], [30] and the
learned policy (Table IV). We compared sagittal and lateral
pushes. For the sagittal push, two impulses are chosen such
that foot stepping occurs for the larger impulse (1:73Ns=kg),
while the smaller impulse (0:57Ns=kg) will result in a strat-
egy without stepping. By comparing the rejectable normal-
ized impulse of the strategies not taking a step (A, B, E, G), it
can be seen that our policy performs similar (E: 0:57Ns=kg,
G: 0:56Ns=kg) to the other controllers (A: 0:6Ns=kg, B:
0:52Ns=kg). For the strategies taking a step (C, D, F),
our policy is able to perform better (F: 1:73Ns=kg) than
the stepping controllers C (0:52Ns=kg) and D (0:6Ns=kg).
Albeit our results are obtained from simulation whereas C
and D are obtained from real experiments, we show in the

next section that the generated motions are realistic and
within the real physical constraints.

G. Realism of generated motions

Despite learning is trained in a simulator, we emphasize re-
alistic motions by enforcing joint angle, velocity, and torque
limits, which are the same as on the real Valkyrie robot.
Therefore, the learned motion could be applied on the real
Valkyrie robot without violating physical constraints. Table
V compares the peak torques and velocities for different
scenarios. The chosen scenarios require the largest joint
torque for dropping and the largest joint velocities for taking
multiple steps due to large pushes at the pelvis. All other
presented test cases required less joint torque and velocity
than the the ones presented in Table V.

VI. CONCLUSION

In this work we proposed a learning framework which
is able to learn a versatile unified control policy via Deep
Reinforcement Learning. We found that the policy is able to
deal with different types of disturbances and has comparable
performance to conventional controllers. The policy acquired
is capable of functioning in unseen situations, demonstrating
that it is generalizing well over tasks. Furthermore, the pro-
posed learning framework is learning algorithm independent.
We showed successful balance recovery with a policy trained
with three of the state-of-the-art DRL algorithms: TRPO,
PPO, and DDPG. The emerging motions for push recovery

782

783

