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Abstract— This paper presents a novel sampling-based mo-
tion planning method using bidirectional search with a time-
configuration space representation that is able to efficiently
generate collision-free trajectories in complex and non-static
environments. Our approach exploits time indexing to separate
a complex problem with mixed constraints into multiple sub-
problems with simpler constraints that can be solved efficiently.
We further introduce a planning framework by incorporating
the proposed planning method enabling efficient pick-and-place
of large objects in various scenarios. Simulation as well as
hardware experiments show that the method also scales from
redundant robot arms to mobile manipulators and humanoids.
In particular, we have demonstrated that the proposed method
is able to plan collision-free motion for a humanoid robot to
pick up a large object placed inside a moving storage box while
walking.

I. INTRODUCTION

The goal in motion planning using trajectory optimization
is to compute state-space trajectories that minimize an objec-
tive function while satisfying a set of constraints. The cost
function usually minimizes the control effort or maximizes
a smoothness criterion while the task is often defined by
constraints. Hereby, we distinguish between two types of
constraints: 1) differentiable constraints, e.g., equality and
inequality constraints such as position and orientation of
the gripper, 2) binary constraints, e.g., state validity such as
collision checks. The latter type is often necessary when the
constraint is discontinuous, non-smooth, highly non-linear,
and cannot be replaced or represented by a proxy constraint.
While type 1 constraints can be efficiently satisfied via opti-
mization exploiting the gradient (derivative) of the constraint
function, type 2 constraints commonly require stochastic
optimization or sampling-based approaches.

Finding a feasible and/or optimal solution while the two
types of constraints are active at the same time is non-trivial.
However, there exists a class of problems, such as pick-and-
place, for which the differentiable and binary constraints are
temporally separable. A pick-and-place task is composed of a
reaching motion (primarily avoiding obstacles), grasping mo-
tion (dominated by accurate gripper positioning), and placing
motion (avoiding obstacles again, however, with changed
collision geometry due to attached/picked up object). We
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Fig. 1: The NASA Valkyrie humanoid robot picking-up a
0.8m long target from a moving shelf and placing it into
a moving storage box while walking. The top figure shows
the environment setup and start (transparent) and goal (solid)
states. The bottom figures highlight some key frames during
the pick-and-place task.

propose to decompose this task into the three respective sub-
problems which will enable us to apply efficient solvers for
each constraint type respectively and adjoin them through
constraints across the transitions. To do this, we require that
all variables describing the problem are indexed on time, e.g.
goal positions, obstacle motion, etc.

Many industrial approaches delivering efficient pick-and-
place solutions focus on perception and grasp planning, while
having the environment manually designed to be simple and
static, such that motion planning has to only account for
static obstacles and moving targets [1]. However, collision
avoidance and interaction with the environment are key for
collaborative as well as humanoid robots that operate in
unstructured environments. On the other hand, collision-
free motion planning in static environments is a much
easier problem even in very complex scenarios by using
sampling-based planning algorithms such as Rapidly Ex-
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ploring Random Tree (RRT), RRT-Connect [2], Probabilistic
Roadmap (PRM [3]), Dynamic Roadmap [4], and many
others [5]. However, sampling-based methods in general
can not handle time-indexed constraints. Time-configuration
space was proposed in [6], [7] for avoiding moving obstacles
using a unidirectional search algorithm. As extending it to
bidirectional search is non-trivial, the algorithm requires long
planning times, e.g., several minutes for a 7-DoF system. Ap-
proaches such as velocity obstacles [8] are commonly used
for generating collision-free trajectories in the presence of
moving obstacles, but normally do not scale to complex en-
vironments. Similarly, sampling-based methods such as Any-
time RRT* [9] address path planning problems in changing
environments but do not scale to high-dimensional motion
planning problems. An alternate approach is to use a swept
volume approximation for continuous collision checking—
this, however, is a highly restrictive approximation of oc-
cupied workspace disregarding the temporal aspect of the
workspace occupation of moving objects. It further prohibits
grasping objects that are contained within a moving box or
shelf as common in real-world applications. Methods that
require preprocessing of the environment or collision models
further face the difficulty of changing collision geometry
from picking up large objects.

Derivative-free, stochastic optimization-based approaches
such as STOMP [10] which perform noisy roll-outs over
trajectories that may be in collision deal with binary con-
straints. However, these are not time-indexed and finding
a solution may be comparatively slow. CHOMP [11] uses
covariant gradient descent and only takes differentiable
constraints into account while replacing binary constraints
with an approximation. T-CHOMP [12] is an extension
of CHOMP to include time indexing for the trajectory
functional; yet, it does not consider moving obstacles as
the robot and environment require preprocessing to create
collision representations suitable for optimization, which
would have to be recreated for every time-index. Efficient
trajectory optimization approaches such as KOMO [13]
(using an approximated Hessian and exploiting its band-
diagonal properties with a second-degree Newton method)
and TrajOpt [14] (using sequential quadratic programming
and convex decompositions of collision objects) only deal
with differentiable, time-indexed constraints. In summary,
trajectory optimization methods which utilize derivative in-
formation are suitable for type 1 constraints, while sampling-
based algorithms are preferable for type 2.

Pick-and-place tasks in non-static environments, e.g., from
inside of a box on a conveyor belt or moving vehicle is a
type of problem that includes both differentiable and binary
constraints with time-indexing, e.g., as shown in Fig. 1 for
the case of a humanoid robot. In order to address such
problem and enable pick-and-place of large objects in non-
static environments, in this paper we propose a planning
framework using a novel time-configuration space sampling-
based planning algorithm that is able to efficiently find
collision-free trajectories in complex and non-static environ-
ments. As part of this, we present a formal solution for time

monotonicity for reverse queries in bidirectional sampling-
based algorithms while adhering to first-order transition
(velocity) constraints.

II. PROBLEM FORMULATION

Incorporating the two types of constraints, we consider
two types of problems: a reaching problem, i.e., reach to
a desired configuration at a given time (II-A) where only
type 2 binary constraints are considered; and a generic pick-
and-place problem (II-B) where both type 1 and type 2
constraints are considered but activated at different parts
along the trajectory. It is obvious that the first problem is
a prerequisite for the latter. Note that the key challenge is
that the environment contains large and complex obstacles
and the task needs to be accomplished while both obstacles
and targets are moving.

A. Reaching Problem in Time-Configuration Space

For a N Degree-of-Freedom (DoF) robot, let q ∈ C be
a state in the configuration space C ⊆ RN . In the rest of
the paper, vectors are denoted in bold font and absolute
values are computed element-wise. Let R(q) ⊂ W denote
the robot’s rigid body posture in the workspace W ⊂ R3

at configuration q, and O(t) ⊂ W the workspace region
that is occupied by obstacles at time t. This implies that
trajectories for the obstacles need to be specified in advance.
The obstacle region in configuration space is defined as
Cobs(t) = {q ∈ C|R(q) ∩ O(t) 6= ∅}, and the collision-
free region is defined as Cfree(t) = C\Cobs(t). For humanoid
robots, we also need to consider balance constraint, thus
let Cvalid(t) = Cfree ∩ Cbalance(t), where Cbalance(t) is the
manifold of statically balanced configurations at time t. For
convenience, let s = 〈q, t〉 ∈ S be the state in the time-
configuration space S = C × R≥0. The valid regions in the
time-configuration space are defined as

Svalid = {〈q, t〉 ∈ S|q ∈ Cvalid(t)}. (1)

Given start state s0 ∈ Svalid and goal state sT ∈ Svalid
in the time-configuration space, together with the obstacles
region over time O(t), t ∈ R≥0, a reaching motion planning
is defined as

q[0 :T ] = Reaching(s0, sT ,O(t))

s.t. ∀t ∈ [0, T ] : qt ∈ Cvalid(t)
(2)

B. Pick-and-Place Problem in Time-Configuration Space

The plan generated by (2), however, only works if the task
is to simply reach the configuration qT at tT without other
constraints. Now consider another scenario where the robot
needs to not only move to qT , but also accomplish an extra
grasping task during the movement. Let y = Φ(q) ∈ W be
the end-effector pose, where Φ(·) is the forward kinematic
mapping. Let y∗[ts:tg ] ∈ Y denote the desired end-effector
trajectory from ts to tg , where ts and tg are the start and
end time of grasping phase, and Y is the set of all valid
end-effector trajectories for accomplishing a certain grasping
task. For example, Fig. 2 (right) shows a simple end-effector
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Fig. 2: Left: grasping trajectory in target frame; right: grasp-
ing trajectory in world frame while the target is moving.
The relative pose between the target and gripper must be
maintained during the grasping process.

trajectory y∗[ts:tg ] for grasping a box target. We define the
pick-and-place planning as

q[0 :T ] = PickAndPlace(s0, sT ,O(t))

s.t. ∀t ∈ [0, T ] : qt ∈ Cvalid(t)

{yt = Φ(qt) | t ∈ [ts, tg]} ∈ Y
(3)

Note that the focus of this paper is motion planning, where
y∗ and Y are assumed given by a high-level grasp or task
planner.

III. METHODOLOGY

While avoiding collision is usually the main constraint
during reaching and placing phases, the grasping phase is
dominated by dexterous and precise positioning of the end-
effector, especially when the target itself is moving, as
shown in Fig. 2. This is difficult to achieve using sampling-
based approaches. Although task-constrained sampling meth-
ods have been proposed to address this issue [15], those
techniques do not scale well to tasks that also include
time-indexing. Furthermore, for redundant systems, the same
object can be grasped by different end-effector trajectories
in Y further complicating the problem, making it intractable
for sampling-based methods. Thus, in this work, we split
the problem into three sub planning problems: reaching,
grasping, and placing, which is a common approach for
solving pick-and-place tasks [16]. The reaching and placing
problems can be formulated as two individual reach planning
problems with time-indexing as formulated by (2); and the
grasping problem is formulated as follows

q[ts :tg ] = Grasping(y∗[ts,tg ],O(t))

s.t. ∀t ∈ [ts, tg] : Φ(qt) = y∗t
(4)

which can be solved by efficient optimization solvers such as
[17] and [18]. In this work, we focus on solving the reaching
and placing problems in a non-static environment with time
indexing, and using existing trajectory optimization solvers
to generate the grasping trajectory. In the rest of this section,
we explain first how to automatically find the grasping time
window [ts, tg] in III-A, and then solve the motion planning
problem in time-configuration space in III-B, and finally
solve the whole pick-and-place problem in III-C.

𝒒

𝑡0

start

goal

Invalid:
high velocity

Invalid:
jump in time

𝑇

Fig. 3: Tree search in time-configuration space.

A. Grasping Time Selection and Completeness

For the pick-and-place framework to work, the grasping
time window [ts, tg] needs to be given as a prerequisite for
other actions to proceed. Let pmid be the location along the
target object trajectory that is closest to the robot base at
tmid , which is set to be exactly at the middle of the grasp-
ing process. The closing/grasping time tclosing is hardware
dependent and assumed known for a given end-effector, e.g.
two-finger gripper, thus the grasping time window can be
obtained,

ts = tmid −
1

2
tclosing , (5)

and
tg = tmid +

1

2
tclosing . (6)

Note that this is a simple approach for automatically deter-
mining the grasping window that works in most scenarios
but does not guarantee that the calculated [ts, tg] will be
always valid, i.e. there exists scenarios where no valid pick-
and-place trajectory can be found for the given [ts, tg]. In
other words, the pick-and-place framework is incomplete.1

However, we want to emphasis here that, while the whole
pick-and-place framework is incomplete, the motion plan-
ning algorithm proposed in III-B is probabilistically complete
as it preserves such property from the original RRT-Connect.
The completeness of the pick-and-place framework can be
recovered by assuming a complete grasping planner that
can provide all possible grasping trajectories Y and the
corresponding grasping windows.

B. Reaching in a Non-Static Environment

In general, geometric sampling-based planners such as
RRT, RRT-Connect, and PRM are independent of the search
space, i.e., they have the ability to solve problems with
different search spaces without the need for changing the
method. However, this generality does not apply to the
time-configuration space. By adding time into the search
space, velocity has been added implicitly. This is in contrast

1An algorithm is considered complete if for any input it correctly reports
whether there is a solution or not. If a solution exists, it must return one in
finite time. A weaker notion called probabilistic completeness is used for
sampling-based algorithms. It posits that as the number of samples goes to
infinity, the probability of finding a solution converges to one.
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with kino-dynamic planning where the velocity is handled
explicitly. As shown in Fig. 3, the velocity can be represented
by the slope of the line which connects two neighboring
states. There are two major features when sampling in time-
configuration space: (1) if two states are very close in time
dimension but far in configuration, the edge is invalid as
such an edge generates very large velocities; (2) the path can
only advance in one direction in the time dimension (time
monotonicity), otherwise the path would jump in time which
is invalid. The sampling procedure needs to be adjusted in
order to avoid these two artifacts. As these adjustments may
vary across different methods, we have chosen to focus on
RRT-Connect in this work as it has been shown empirically
as one of the most generic and efficient sampling-based
methods [4].

The uniform joint velocity required to transit from state
sa to state sb is defined as

vab =


|qb−qa|
tb−ta , ta 6= tb

∞, ta = tb,qa 6= qb

0, ta = tb,qa = qb

(7)

Although this is based on the assumption that joints can
accelerate instantaneously, it is a suitable simplification of
the problem as the proposed method constitutes a geometric
planner. We deploy two distance functions: the forward time
distance and the reverse time distance. Note that the sign of
vab indicates the direction in time dimension, i.e., positive
velocity means moving forward in time (valid during forward
search) and negative velocity means moving backward in
time (valid during reverse search). We require two metrics
to facilitate the bi-directional search executed by the RRT-
Connect algorithm. Given two states sa and sb, the forward
time distance is defined as

dforward(sa, sb) =

{
∞, vab ≤ 0 or vab ≥ vmax

wd‖qa − qb‖+ wv‖vab‖, otherwise
(8)

and the reverse time distance is defined as

dreverse(sa, sb) =

{
∞, vab ≤ −vmax or vab ≥ 0

wd‖qa − qb‖+ wv‖vab‖, otherwise
(9)

where wd and wv are constant weighting factors. In simple
scenarios, one can set wd = 1 and wv = 0—in this case, the
above functions represent Euclidean distances.

The distance functions are then integrated into two differ-
ent nearest neighbor tree structures: The forward time tree
and reverse time tree, respectively. Given a set of existing
states on the tree and a random state srand, the nearest
neighbor function should return the state with the minimum
forward/reverse space-time distance to srand. In cases where
the nearest neighbor function returns a state with infinite
distance, another random state needs to be sampled until the
nearest neighbor function returns a neighboring state with
a valid distance. So far, by changing the distance function
and nearest neighbor structure, the default RRT-Connect

Algorithm 1 Time-Configuration Space RRT-Connect

Require: s0, sT , O(t)
Ensure: Collision-free trajectory q[0:T ]

1: Tforward .Insert(s0), Treverse .Insert(sT )
2: Tcurrent = Tforward

3: Tother = Treverse
4: while not Terminate do
5: srand = SampleRandom()
6: snear , d = Tcurrent .Nearest(srand)
7: if d =∞ then
8: srand = CorrectTime(snear , srand)

9: snew , status = Extend(snear , srand)
10: if status is not Trapped then
11: snear = Tother .Nearest(snew )
12: if snear is not null then
13: status = Connect(snear , snew )
14: if status = Reached then
15: return Path(Tforward , Treverse)

16: swap(Tcurrent , Tother )

17: return Failure

planner should be able to solve planning problems in time-
configuration space. However, such a naı̈ve treatment would
lead to a high probability for returned states to have an
infinite distance resulting in high rejection rates and long
planning times. Thus, if a new random state has no valid
neighbor on the tree, we adjust the time component of the
time-configuration space such that a given neighboring state
can be reached within the velocity limits by passing the new
random state into a CorrectTime function. Given a ran-
dom state srand = 〈qrand, trand〉 and the nearest neighboring
state snear = 〈qnear, tnear〉, the adjusted time trand can be
obtained by

trand =

{
trand, |trand − tnear| ≥ tmin
trand + sign(trand − tnear)tmin , other

, (10)

where
tmin = max

{∣∣∣∣qnear − qrand

vmax

∣∣∣∣} (11)

is the minimum time required for the robot to transit from
snear to srand at the maximum allowed velocity vmax . The
RRT-Connect algorithm for solving time-configuration space
problems is highlighted in Algorithm 1 (cf. [2] for more
details on the general RRT-Connect algorithm). Note that in
line 6, in scenarios where all existing states have infinity
distance to the new random state, the nearest tree search
returns the state that is closest (but not equal) to the random
state in time dimension.

C. Pick-and-Place Planning in Non-Static Environments

The motion plans generated in III-B only work for transit-
ing the robot to a desired goal configuration, but are unable
to accomplish additional tasks during the movement. In the
following section, we explain how to perform a grasping
task during the movement as defined by (3). As illustrated
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Fig. 4: Overview of the proposed pick-and-place pipeline.

in Fig. 4, we first select one candidate trajectory y∗ ∈ Y as
the input to (4) to generate a grasping trajectory. This step
is formulated as a trajectory optimization problem and can
be solved by various non-linear programming solvers such
as SNOPT [17] or AICO [18]. Including collision-avoidance
into the optimization is non-trivial and the solver can easily
get trapped in local minima when facing complex collision
models even in static environments, not to mention moving
obstacles. Thus, we do not consider collision-avoidance in
the objective or constraint functions. The optimization solver
is initialized with a random seed trajectory, followed by a
binary collision-free validity check on the output grasping
trajectory q[ts,tg ]. A new y∗ will be selected and tested if
the optimizer returns failure or leads to a colliding trajectory.

After having found an optimal grasping trajectory q[ts,tg ],
the reaching and placing problems are invoked with
{q0,qts} and {qtg ,qT } as the start and goal states, re-
spectively. A whole pick-and-place trajectory q[0,T ] can be
created by concatenating q[0,ts],q[ts,tg] and q[tg,T ]. Similarly,
the process should restart with a different y∗ if either
reaching or place planning returns failure. Note that the
grasped object is attached to the robot’s end-effector and con-
sidered for collision checking during placing—this further
complicates the planning problem especially when grasping
large objects.

Finally, a post-planning simplification process can be
applied to improve the smoothness of q[0,T ]. We have
used the standard path simplifier from the OMPL in our
implementation [19]. Note that although the path simplifier
was designed for configuration spaces without time indexing,
it is still valid when used for time-configuration space. When
trying to simplify a path, for instance as the scenario shown
in Fig. 3, short-cutting any two non-neighboring states results
in a new edge with a slope that is smaller than the maximum
slopes of the original edges between the neighboring states,
thus the maximum velocity constraint will not be validated
during path simplification.

D. Pick-and-Place in Non-Static Environments while Walk-
ing

The proposed method is able to directly plan pick-and-
place motion for fixed-base robotic arms as well as mobile
manipulators. However, for more complex systems such as
bipedal humanoids, it is unrealistic based on current method-

ology to directly plan a whole pick-and-place motion for the
full-body, as such a system requires extra balance constraint
which is difficult for sampling-based planners. While we
have demonstrate in our previous work that we can efficiently
plan collision-free end-poses with floating-base [20] and full-
body motion with fixed-base [21], planning collision-free
pick-and-place motion in non-static environments while the
robot is walking is still a challenging problem.

We split the walking and pick-place into two subproblems
instead of trying to solve them together. We assume that a
lower-body trajectory qlower [0,T ] can be first planned using
existing footstep or walking planners with the upper-body
set to a default posture. We can then extract the floating
base link (the pelvis) trajectory ppelvis[0,T ] using forward
kinematics. During planning phase, for each sampled state
s = 〈q, t〉, the lower-body and the pelvis are first set to the
correct posture according to qlower [0,T ] and ppelvis[0,T ]. The
support polygon at t can be then calculated and a upper-body
sample is valid only if it is collision-free and the centre of
mass projection lies within the support polygon.

IV. EXPERIMENTS

The proposed pick-and-place framework has been imple-
mented within the Extensible Optimization Toolset (EXOT-
ica) framework [22].2 The time-configuration space RRT-
Connect solver is implemented as an extension on top of the
Open Motion Planning Library (OMPL), which is wrapped
as part of EXOTica. Simulation evaluation was performed
using an Intel Core i7-6700K 4.0 GHz CPU with 32GB
2133MHz RAM. Two different robot platforms were tested
during the experiments: a 7-DoF KUKA LWR industrial
manipulator, an omni-directional mobile manipulator with a
7-DoF Franka Emika Panda robotic arm (10-DoF in total)
and a 38-DoF NASA Valkyrie humanoid robots. We have
also conducted hardware experiments on the KUKA LWR
robot showing that the proposed method is applicable to
solve real-world problems.

A. Evaluation of the pick-and-place planning framework

We first conducted two experiments in simulation to
evaluate the effectiveness and efficiency of the proposed

2The EXOTica library is an open source project for easy prototyping and
benchmarking of planning and control algorithms. The source code of the
proposed method can be obtained from
https://github.com/ipab-slmc/exotica.

897



Fig. 5: Experiment R1: reaching into moving box.

Fig. 6: Experiment R2: fetching distant object in the presence of large moving obstacles. The red lines indicate the obstacles’
movement and the blue lines show the base trajectories.

method. In experiment R1, as shown in Fig. 5, the robot
arm fitted on the mobile base needs to pick-up a large
green object placed inside a box on another mobile base
which is passing by at 0.1 m/s. The robot base is fixed
in this scenario, thus N = 7. In the second scenario R2,
as shown in Fig. 6, the robot needs to coordinate the arm
and base, i.e. N = 10, in order to fetch a distant object
while the environment is populated with several large moving
obstacles. The whole pick-and-place duration is set to 10
seconds, i.e. T = 10 and tmid = 5. The grasping phase is
then set to [ts = 4, tg = 6] according to (5) and (6), resulting
a [0, ts = 4] reaching phase and [tg = 6, T = 10] placing
phase. The joint velocity limits are set to the maximum
allowed velocity on the robot hardware (π rad/s for each arm
joint and 1.5 m/s for the base). The average planning time
over 100 trials is highlighted in Table I. The results show that
the proposed planning method is capable of finding collision-
free trajectories in time-configuration space very efficiently.
As we have mentioned, the reaching and placing trajectories
can be generated using the proposed time-configuration space
planner, while the grasping is formulated as a trajectory
optimization problem. The planning time of the grasping
trajectory is subject to different algorithms and implemen-
tations of the optimization methods. In our experiments
we use the Approximate Inference Control (AICO, [18])
solver implemented in the EXOTica framework. Note that the
placing motion planning takes much longer to compute than
the reaching motion as the large target object is attached to
the robot end-effector thus further complicating the collision
avoidance task.

We have further carried out a set of experiments evaluating
how different joint velocity limits and the CorrectTime
function can affect the planning time. The experiment R1, i.e.
reaching into the box, has been extended with four different
joint velocity limits vmax : π rad/s, 3

4π rad/s, π
2 rad/s and

π
4 rad/s. The planning time result is highlighted in Table II,
which suggests that, within a certain margin, e.g. π and 3

4π,

TABLE I: Pick-and-place motion planning time with stan-
dard deviations (in millisecond). The result is averaged over
100 runs for each scenario.

Experiment Reaching Grasping Placing Total

R1, Fig. 5 9.2± 4.6 105.9± 5.8 28.2± 24.4 143.3

R2, Fig. 6: 36.0± 23.6 142.9± 13 44.5± 37.2 223.4

TABLE II: Reach motion planning time with different joint
velocity limits (in milliseconds), the last column shows the
improvement factor by using the CorrectTime function.
The result is averaged over 100 runs for each scenario.

Joint velocity
limits (rad/s)

with
CorrectTime

without
CorrectTime

without/with

3.142 (π) 9.2 10.3 1.117

2.335 (3π/4) 9.5 10.6 1.119

1.571 (π/2) 13.3 15.1 1.138

0.785 (π/4) 29.6 48.9 1.653

the planning time does not necessarily get affected by the
joint velocity limits. When the maximum allowable joint
velocity decreases more significantly, e.g. π

2 or π
4 m/s, the

planning time increases with the decrease of joint velocity
limits. In this case, the velocity limits create a state space
with significant bottlenecks that are more costly to explore
using randomized sampling. The result also shows that,
especially with a limited maximum allowable joint velocity,
the CorrectTime function does make a difference and thus
improves the planning efficiency.

B. Experiments on robot arm hardware

We have also conducted hardware experiments on the
KUKA LWR robot to demonstrate that the proposed method
is applicable for solving real-world problems, as shown in
Fig. 7 and Fig. 8. The tested tasks include picking up objects
that are placed inside of a box (H1) or a shelf (H2) on a
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Fig. 7: Experiment on robot hardware H1: picking up an object placed inside of a box on a moving conveyor belt.

Fig. 8: Experiment on robot hardware H2: fetching an object placed inside of a shelf on a moving conveyor belt.

moving conveyor belt. The whole pick-and-place process is
set to T = 10 seconds with the conveyor belt moving at
0.1 m/s. We assume the model of the collision environment
and Y are given. The robot is fitted with a Schunk Dexterous
Hand which takes approximately 3 seconds to close, thus, the
grasping phase is set to [ts = 4, tg = 7]. The main challenge
here is that the robot hand and target objects are intentionally
large for these highly constrained environments, where the
motion needs to be carefully planned to avoid any possible
collisions.

C. Pick-and-Place in Non-Static Environment while Walking

Last but not least, we have also deployed the proposed
method on the NASA Valkyrie humanoid robot to accom-
plish pick-and-place tasks during walking in simulation. As
described in III-D, we used an existing walking planner to
generate a 20 second walking trajectory on a flat ground with
a velocity of 0.13m/s. One mobile base is moving towards
the robot at a velocity of 0.2m/s with a large target object
placed inside a storage box, another mobile base with an
empty storage box is crossing the robot’s walking path also
traveling at a speed of 0.2m/s. The task is to pick-up the
target from the first storage box and put it into the other
one. The key challenge here is that the robot will be walking
along the planned pelvis trajectory during the whole pick-
and-place phase. The grasping window is set to 7s− 9s, the
placing window is set to 18s− 20s and the final upper-body
stopping time is set to 28s, i.e., the walking stops at 20s
but the upper-body takes an extra 8s to safely go to default
posture. Snapshots of the motion is highlighted in Fig. 1
and Fig. 9. A supplementary video of the simulation and
hardware experiments can be found at

https://youtu.be/jhht2H8Dgqk.

V. CONCLUSION

In this work, we have proposed a novel time-configuration
space bidirectional sampling-based planning algorithm which

is capable of efficiently searching for collision-free trajecto-
ries in complex and changing environments. By using the
planning algorithm, we also introduced a pick-and-place
planning framework with simulation and hardware experi-
ments showing that the method is able to plan pick-and-
place trajectories for grasping large objects in challenging
scenarios. The proposed method is very efficient and scales
to redundant robot arms as well as mobile manipulators with
more than 10-DoF.

Meanwhile, the proposed method has certain limitations.
First, the grasping trajectory y∗[ts,tg ], the grasping duration
[ts, tg], and the total time T are either pre-specified, or
calculated by naı̈ve assumption as in (5) and (6). While the
grasping trajectories can be solved by interfacing to existing
grasp planning methods, finding an appropriate grasping
duration [ts, tg] is non-trivial. Thus, future work includes
automatic planning of the grasping duration, which is similar
to end-pose planning [23] with the difference that a reachable
trajectory, rather than only a reachable pose, needs to be
found. Another limitation is that, although the proposed
method limits the maximum velocity, it does not guarantee
smoothness and optimality which may generate trajectories
with non-smooth acceleration or jerk profiles. Such artifacts
which are common to geometric sampling-based planning
methods point out possible future work in extending the
proposed method to kinodynamic planning or to incorporate
it with trajectory optimization for generating smooth and op-
timal motion. Finally, an integration with a shared autonomy
system such as [24] opens up the possibility for collaborative
mobile manipulation applications and deployments.
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