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HDRM: A Resolution Complete Dynamic Roadmap
for Real-Time Motion Planning in Complex Scenes

Yiming Yang ~, Wolfgang Merkt

Abstract—In this letter, we first theoretically prove the condi-
tions and boundaries of resolution completeness for deterministic
roadmap methods with a discretized workspace. A novel variant
of such methods, the hierarchical dynamic roadmap (HDRM), is
then proposed for solving complex planning problems. A unique
hierarchical structure to efficiently encode the configuration-to-
workspace occupation information is introduced and allows the
robot to check the collision state of tens of millions of samples
on-the-fly—the number of which was previously strictly limited
by available memory. The hierarchical structure also significantly
reduces the time for path searching, hence, the robot is able to
find feasible motion plans in real-time in extremely constrained
environments. A rigorous benchmarking shows that HDRM is ro-
bust and computationally fast compared with classical dynamic
roadmap methods and other state-of-the-art planning algorithms.
Experiments on the seven degree-of-freedom KUKA LWR robotic
arm integrated with live perception further validate the effective-
ness of HDRM in complex environments.

Index Terms—Motion planning, dynamic roadmap, realtime
planning, collision avoidance.

I. INTRODUCTION

OTION planning is one of the fundamental problems
Min robotics and involves automatically finding a se-
quence of configurations that take the robot from a start to
a goal pose. Generally, motion planning can be categorized
into optimization- and sampling-based methods. Optimization-
based approaches [1], [2] generate optimal trajectories with re-
spect to cost functions, but may get stuck in local minima and
fail to produce a valid solution when the problem is non-convex
or ill-defined. On the other hand, sampling-based algorithms
[3]-[6] promise to solve complex problems by sampling glob-
ally in the configuration space.

In sampling-based algorithms, collision checking is usually
the most expensive operation and reportedly consumes up to
90-95% of the planning time [7]. Lazy collision checking is
used to delay the collision checking until it is needed or limit it
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Fig. 1. The 7-DoF KUKA LWR robot with a SCHUNK Dexterous Hand
operating inside a cage. Left: grasping the target from upright posture; right:
dropping the object to the side.

to particular regions [8]. However, these techniques only reduce
the collision checking time indirectly by reducing the number
of calls rather than the actual computation time of the colli-
sion checking function. Parallel implementations for collision
checking and motion planning have been proposed [9], but these
approaches focus on parallelization and system implementation
based on existing algorithms.

In contrast, the Dynamic Roadmap (DRM) [10], an exten-
sion to the probabilistic roadmap (PRM) [4], algorithmically
reduces the collision checking time by encoding configuration-
to-workspace occupation information. Given different environ-
ments, the DRM can efficiently remove invalid edges and form
a valid subset of the full roadmap. Subsequently, search algo-
rithms can proceed without considering collision checking since
the remaining vertices and edges are all collision-free. However,
encoding the occupation information requires to store a signif-
icant amount of data which needs to be loaded into memory
during run-time. In the early work [10], [11], the low amount
of available memory allowed storing only small roadmaps with
limited number of vertices and edges. Without enough vertices
and edges to densely cover the configuration space, the DRM
achieves very low planning success rates [11], [12]. The success
rate is closely tied with the term Completeness. An algorithm is
considered complete if for any input it correctly reports whether
there is a solution or not. If a solution exists, it must return one
in finite time [13]. Optimization-based methods are incomplete
due to local minima. Unfortunately, sampling-based algorithms,
such as PRM and Rapidly-exploring Random Tree (RRT), are
also incomplete. A weaker notion of completeness called proba-
bilistic completeness is used to describe random sampling-based
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algorithms. This means that with enough samples (possibly in-
finite number of samples), the probability of finding a solution
asymptotically converges to one. Another term, resolution com-
pleteness, is used if an algorithm guarantees to find a solution
in finite time; however, if a solution does not exist, the algo-
rithm may run forever by incrementally increasing the sampling
resolution. Alternatively, the algorithm may terminate in finite
time by reporting no solution at a certain resolution, although
one may exist at a finer resolution. In more recent work [14],
a DRM consisting of up to a million vertices can be stored
and updated efficiently by using more memory and powerful
GPUs. However, even one million vertices are not enough for
dense coverage of 6-7 dimensional configuration spaces. In-
stead of claiming completeness, a small size DRM was built
on customized hardware for solving very specific tasks [15].
In contrast to a roadmap, a Dynamic Reachability Map only
stores vertices but not edges and is able to find valid reaching
poses for high-dimensional floating-base robots [16], [17]. No
matter whether we store a small roadmap with limited vertices
and edges, or only the vertices, these methods eventually need
to sacrifice completeness for a manageable storage size.

In order for robust motion planning in complex environments
to be practical, a tremendous number of vertices and edges are
required; yet storing such a roadmap is infeasible on commodity
computers with current technology. However, we observe that
the memory consumption for storing a DRM can be greatly
reduced by exploiting the topology of the robot. On this basis,
in this letter we propose a new resolution complete planning
algorithm, the Hierarchical Dynamic Roadmap (HDRM), with
the following contributions:

1) Theoretical proof of resolution completeness of any de-

terministic roadmap with a discretized workspace;

2) A novel formulation for encoding the occupancy informa-
tion of roadmap vertices and eliminating the necessity of
computing/storing edges, which enables efficient storage
of roadmaps with tens of millions of vertices;

3) A novel hierarchical structure that allows the roadmap to
efficiently remove colliding samples, which in turn en-
ables real-time motion planning in complex scenes.

Extensive benchmarking shows that the HDRM is able to find
valid solutions in extremely constrained conditions within a few
milliseconds or less, which could not be achieved previously
by classical DRM and other state-of-the-art algorithms. Exper-
iments on a KUKA LWR arm further demonstrate HDRM’s
capability to solve real-world problems.

II. DYNAMIC ROADMAP

A. Preliminaries

LetC € RY be the configuration space of a N-DoF robot and
q € C beastate in configuration space. Let C,; s represent the ob-
stacles and Cs,... = C\Cops the collision-free region. A classical
PRM contains a connected graph G = (V, £), where V € Cy,.
are the vertices and £ C Cy,.. are the edges that connect two
neighboring vertices, as highlighted in Fig. 2 (left). These ver-
tices and edges are generated during off-line pre-processing.
During the on-line planning phase, given start and goal states
Qstart> Agoal> We first find these two vertices Vo and Vyoq
which are closest to the start and goal states respectively. Then
a graph search algorithm, such as A* [18], is deployed to find a
path in the roadmap connecting Vi;q,¢ and V.41 However, the
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Fig. 2. Preliminaries of DRM. Left: probabilistic roadmap in configuration
space; right: workspace swept volume of an edge.

pre-generated vertices and edges may not be valid in unknown
and non-static environments. The validity of the stored vertices
and edges must be checked, and in many cases we need to sam-
ple new collision-free configurations during the on-line phase
which is very time consuming.

The dynamic roadmap (DRM) is a variation of the PRM pro-
posed by Leven and Hutchinson [10]. The DRM is dynamic in
the sense that the graph G can be dynamically updated in dif-
ferent environments. The invalid vertices and edges can be effi-
ciently identified and removed, with the remaining ones forming
anew graph of only valid vertices and edges. This reduced graph
is ready for path searching algorithms without considering col-
lision checking. The key feature of DRM is a configuration-to-
workspace mapping, as highlighted in Fig. 2 (right). One can
find the list of discretized workspace voxels which an edge oc-
cupies, referred to as the swept volume. If one or more of the
voxels in the swept volume are in collision, then the correspond-
ing edge becomes invalid. In practice, it is inefficient to check
the swept volume of all edges exhaustively. Instead, the occupa-
tion information is stored per each workspace voxel, i.e., each
voxel stores a list of edges that sweep through this voxel. In a
new environment, we first find all the voxels that are occupied
by the obstacles in the environment. Then, by iterating through
the occupation lists of these invalid voxels, all the invalid edges
can be found and then removed accordingly.

The main observed limitation of the existing DRM method is
its low success rate [11], [12]. Although the success rate can be
improved for particular tasks by carefully selecting the samples
[15], those approaches can not solve generic problems, therefore
they are not (resolution) complete.

B. Resolution Completeness of a Deterministic Roadmap With
Discretized Workspace

In this section, we provide theoretical proof of the condi-
tions and boundaries of resolution completeness for determinis-
tic roadmap methods with a discretized workspace. Note that the
proposed HDRM is a special case of deterministic roadmap with
discretized workspace, therefore the following general proof
also applies to HDRM.

The work in [19] has proven that a deterministic roadmap,
such as a uniform Sukharev grid, is resolution complete. Let
U be the subset of the power set of C corresponding to all
open subsets that can be constructed with algebraic constraints
(see [20]), and ¥ (x) for z € (0, 00) be the set of all C,.. with
the width of Cpee, w(Crree) > x. The width x can be viewed as
the minimum width of a passable corridor in the collision-free
portion of the configuration space, as illustrated in Fig. 3(a).
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Fig.3. Illustration of additional volume an obstacle in a discretized workspace
occupies in the configuration space. An algorithm is resolution complete if it
accounts for the additional increase corridor width f(s) due to discretization.
(a) Configuration Space. (b) Workspace.

Lemma 1: After M iterations, a deterministic DRM is reso-
lution complete for all Cy,... € W(4b(N)M~~ + f(s)), where
M is the number of samples, N is the dimension of the
configuration space, s is the resolution of the workspace, b(N')
is a factor that depends on the sampling method (b(N) = 1 for
HDRM) and f(s) is a robot-dependent function.

Proof: It has been proven in [19] that, after M iterations,
a deterministic roadmap planner is resolution complete for
all Cfpee € W(4b(N)M ~~ ), without workspace discretization.
However, as shown in Fig. 3, with a discretized workspace with
voxel size s > 0, the corresponding Coridor and Cyps are both
inflated by maximum % f(s) due to the workspace discretiza-
tion, where Ceo,1id0r 18 the narrowest corridor in the configura-
tion space. The inflated C.,,,i40» and C,ps must not intersect.
Thus, after discretizing the workspace, the algorithm is able to
solve problems for C}, .. where w(C},,.) = w(Cprec) + f(5).
Thus, the algorithm is resolution complete for all Cy... €
W(AL(N)M~~ + f(s)). ]

To calculate f(s),let V(e) denote the voxelized swept volume
of an edge e, and Cy (. be the C space region occupied by V' (e),
then the widrh of C';,._ can be defined as

ree

W(Chrec) = AN)M ¥ 4 f(s) = sup{w(Cr ()}, (1)
ec
which yields
1(5) = sup{w(Cy (e))} = 4b(N)M . 2)
ec
It is practically difficult to pre-determine f(s) before sampling
as it depends not only on the number of samples M and resolu-
tion s, but also on the robot’s geometric shape.

C. Limitations: Curse-of-Dimensionality

According to Lemma 1, although certain level of resolution
completeness can be guaranteed for any given workspace and
configuration space resolution, the algorithm would not be prac-
tically useful if w(C},,,.) is too wide. To achieve a smaller
w(C}, .. ), one could either increase the number of samples or
the workspace resolution. However, both options are restricted
by the available memory size.

For example, consider a 6-DoF robotic manipulator where
K = 15 different discretization values are chosen for each joint.
In this case we would generate M = 155 ~ 11.4 million vertices
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Fig. 4. A 2-DoF example of HDRM with K; = Ky = 3, the number of
roadmap vertices stored in the structure is K x Ko = 9.

to build a DRM. If each vertex occupies around 400 workspace
voxels, that means the occupation lists may contain billions of
indices (unsigned int!'), which is too expensive to store
on commodity hardware. Note that this is only a 6-DoF case
and the problem scales exponentially with the dimension of the
configuration space (curse-of-dimensionality).

III. HIERARCHICAL DYNAMIC ROADMAP

To obtain a resolution complete method with a smaller
w(C%,.. ), we introduce the Hierarchical Dynamic Roadmap by
exploiting the inherent hierarchical structure of the robot, which
in turn enables us to store a roadmap with tens of millions of
vertices within a limited amount of memory.

A. Hierarchical Configuration Structure

Let [by, 1, by ] be the lower and upper bounds of joint n € N
of a N-DoF robot. An even discretization of the n-th joint to
K,, € N values results in configurations

bnu_bnl
n kn :bn kn_l ———— 3
) = o+ = 1) x 2L
where k,, € {1,..., K, }. Let
k(n) = [ki,..., k] 4)

be a n-dimensional vector containing the joint value indices for
the first n joints, and

ak(n)) = g1 (k1), ..., qn (k)] S)

be a n-dimensional vector contains the actual joint values corre-
sponding to k(n). The full N-dimensional robot configuration
can be retrieved given k(NV). For example, as shown in Fig. 4,
consider a 2-DoF robot, where the range of motion of each joint
is [, 7]. Given K1 = Ky = 3, wehave ¢ (1) = ¢2(1) = —,
@1(2) = ¢2(2) = 0,and q1 (3) = ¢2(3) = 7. Then, k(2) = [1,1]
gives the robot configuration q = [—m, —7], k(2) = [2, 3] gives
another robot configuration q = [0, 7], and k(1) = [2] gives the
first joint value ¢; = 0.

The data structure stores the equivalent of M = Hiv K,
vertices. The robot configurations can be accessed with k(n),
however, the vertices in the roadmap are indexed with one inte-
gerindex i € M. Let H : (n,i) — k(n) be the map from pair
(n,i) to k(n), and H~' : k(n) — (n,i) be the corresponding
inverse map. Given an index ¢ and level n, the first n indices
k(n) = H(n, i) can be efficiently calculated using Algorithm 1.
Similarly, given hierarchical indices k(n), the corresponding
(n,4) can also be found by Algorithm 2.

IThe size of one unsigned int is 4 Byte on 64-bit operating systems.
Hence storing indices for the occupation lists for these vertices in this example
requires 4 x 400 x 11.4 x 105 Byte ~ 17 GB of memory. 400 is the average
number of voxels occupied by one sample of the LWR robot at s = 5cm.
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Algorithm 1: Get Hierarchical Indices From Integer Index.

Require: Dimension level n, vertex index ¢
Ensure: Hierarchical indices k(n)
1: Quotient= ¢
2: Whilen > 1do
3:  Quotient, Remainder:Division(Quotient,H;” K,)
4:  k, =Remainder
5: k; =Quotient
return k(n) = [k1,..., k]

Algorithm 2: Get Integer Index From Hierarchical Indices.

Require: Hierarchical indices k(n) = [k1,. .., k,]
Ensure: Dimension level n, vertex index ¢
1: =0
2: forle{l,...,n—1}do
3:  Counter =1
4: forje{l+1,....,n—1}do
5: Counter = Counter x K
6 i = 1 + Counter X k;
Toi=1i+k,
return n, ¢
qs o 9 | |q, q; ‘q‘;’is :4%‘13
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Fig. 5. Comparison of classical and hierarchical DRM. (a) A long edge

£(q1,q4) in classical DRM sweeps through a large number of workspace
voxels. (b) Dense vertices and short edges in HDRM. (a) Classical DRM,
(b) Hierarchical DRM.

The hierarchical structure is a multi-resolution Sukharev
grid [19] with b(N') = 1, thus the hierarchical roadmap is resolu-
tion complete for Cyy.c. € U(4M~ ¥ + f(s)). As we will show
in Section III-C, such a structure enables a hierarchical way for
storing the configuration-to-workspace occupation information
that dramatically reduces the memory consumption.

B. Removal of Swept Volumes

There are two types of occupation information: the occupation
voxels of a vertex and the swept volume of an edge (dark and
light grey voxels in Fig. 5 respectively). In the classical DRM
algorithm, the edge is invalidated if one or more voxels in the
swept volume are in collision. However, there will be many sub-
edges still valid in the cases where only very few of the voxels
are in collision. For example, in Fig. 5(a), if only the red voxel
is in collision, the long edge £(q1, q4) is invalid while the sub-
edge £(qs,qq) is still valid. Yet, the whole edge is considered
invalid as these sub-edges are not stored in the roadmap. This is
the underlying reason for planning failures and the low success
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Fig. 6. Illustration of the maximum discretization step A, the n-th joint can
take without violating (6).

rate of the classical DRM method, i.e., the f(s) in (2) is too
large to make it practically useful. In fact, we argue that storing
swept volumes does not utilize available resources well as this
information is used only for collision checking and not the
actual path planning. Therefore, we propose to use the memory
for storing more vertices and edges instead.

In our method, we store only the occupation voxels of the
vertices excluding the swept volumes of the edges, while still
being able to check the collision status of both vertices and
edges. Let O, be the occupation voxels of a vertex a, and O, ;
be the swept volume of edge & (a, b). If two vertices a, b are very
close and the edge is so short that

Oup =0, UOy, (6)

then we do not need to store the swept volume of the edge since
it can be represented by the occupation voxels of these two end-
point vertices, as illustrated in Fig. 5(b). The edge £(a,b) is
collision-free if vertices a, b are collision-free, and vice versa.
This ensures that a colliding workspace voxel only affects those
corresponding short edges without invalidating others. A lower
bound of K, needs to be met in order to achieve such roadmap
density.

Letf, = b, , — by, ; be the range of motion of joint n, [, and
r, be the approximate length and radius of n-th robot link, as
illustrated in Fig. 6. For joint n, set all the subsequent/child joints
such that the rest of the robot kinematic chain is fully extended.
We assume that only one joint moves at a time, in which case, the
distance between the n-th link of two neighboring configurations
must not be greater than s + V/2r,,, so that two end-effector links
occupy the same or neighboring workspace voxels in order to
satisfy (6). Hence, the inequality constraint shall be

21y, Ay
sup {3+[Tk} Zg, (7)

n<k<N 27TL»],€1

where LE = SV/=" [, is the fully extended length from link 7

j=n

to link k, k > n. Rearranging terms yields

A, < sup {8 V2 } . (8)

n<k<N L

So joint n should have evenly distributed values of

-1
en S+ \/irk
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within its range of motion. We choose the minimum valid value
for each K, which already guarantees resolution completeness
for a certain workspace voxel resolution s. Greater K, only
introduce more vertices and edges that increase memory con-
sumption and slow down the search process.

The swept volumes can be removed if (9) is true for all joints.
Furthermore, the information of the hundreds of millions of
edges itself can be removed as well, because all the edges can
be calculated analytically from the hierarchical structure. A N-
dimensional configuration k(/V) has 2 x N neighbors (apart
from the ones at the boundary of the range of motion), each of
which forms an edge with k(IV). As the edges have no direction,
a N-dimensional HDRM with M vertices contains roughly NV x
M edges. It is also possible to allow full connectivity to all
neighbors and thus the ability to move multiple joints at a time,
but it will require a higher sampling density to achieve resolution
completeness with the same W(x). Alternatively, one can also
apply smoothing or trajectory optimization techniques to further
optimize the trajectory to obtain multi-joint movement.

C. Hierarchical Occupation Lists

Section III-A described how to create a hierarchical struc-
ture to efficiently store tens of millions of configurations, and
Section III-B explained why and how to remove the swept vol-
umes and edges. The final step involves processing and storing
the occupation lists of all vertices. However, when the roadmap
contains tens or potentially hundreds of millions of vertices,
their occupation lists are too expensive to store using classi-
cal methods. Next, we discuss how to exploit the hierarchical
structure to resolve this problem.

Let B, be the collision body between joint n and n + 1.
Consider Ky configurations with identical values for the first
N — 1 joints but only differing at the last joint, as illustrated
in Fig. 7. These K configurations are invalid if By _; is in
collision at the red voxel. In the classical DRM method, the
red voxel’s occupation list needs to store Ky indices to encode
this information where each index corresponds to a particular
configuration—which is very inefficient.

Instead of storing integer indices 7 € M for each configura-
tion, we store a list of pairs (n, i), where i € []] K, andn € N.
A pair (n, 1) is added to a workspace voxel v’s occupation list
if B,, at configuration k(n) = H(n, i) occupies this voxel. In
Fig. 7, when the red voxel is in collision with the environment,
based on the pair (N — 1, 7), we can invalidate the ¢-th vertex of
level N — 1 of the hierarchical structure. It is clear that all these
K configurations are invalid since the first N — 1 joints have
already caused body By _; to be in collision. Hence, we can
encode the occupation information of K configurations using

Algorithm 3: Generate Hierarchical Occupation Lists.

Require: Robot model R, voxelized workspace V
Ensure: Hierarchical occupation lists O,,,v € V

1: forv € Vdo
2:  Occupation list O, = ()
3: forne{l,...,N}do
4: forie{l,....][{ K,} do
5: k(n) = H(n,1)
6: Set first n joints of R to q(k(n))
7: if {By,...,B,} are NOT in self-collision then
8: V = findBodyOccupiedVoxels(V, R, 5,,)
9: forv e V do
10: 0, =0,U{(n,i)}
11: else
12: Set vertex (n,4) as default invalid

13: forv € V do
14: forn = N to1ldo

15: O = extractListOfDimension(O,, n)

16: Remove duplicated indices and sort O

17: for O; € O do

18: if O, mod K,, =0 & O+, = O; + K,, then
19: Ov = O?\{(nap”p € [Oiv"'70i+K,,]}

20: if n > 1 then

21: k(n) = [ki,..., k] = H(n,0;)

22: O, =0, U{(n—1LT[Z1 " ky)}

23: =1+ K, -1

only two rather than Ky indices. Consider another case with
Ky x --- x Ky vertices, which could be millions, that have
same value k; for the first joint but differ at all other joints. If
ky puts By to a colliding position with the environment, then
the millions of vertices with same k; index are all invalid. In
such case, we can more efficiently use only a pair (1, k; ) instead
of millions of indices to encode the occupation information of
all these vertices. As we will show later in Section I'V-B, using
the hierarchical structure and this novel indexing technique, we
can significantly reduce the memory required for storing the
occupation information.

Algorithm 3 shows the details of generating the full occupa-
tion lists for all workspace voxels. First, given the size of the
workspace and grid resolution s, a set of workspace voxels V
can be generated. Each voxel v € V is associated with an empty
occupation list O, . Lines 3—12 generate the initial hierarchical
occupation lists, but we can compress these to further reduce
memory storage (lines 13-23). The compression is based on the
fact that some robots, or part of the robots, are axially symmetric,
which means that rotating a joint will not change the occupation
list of the subsequent links. More generally, if the collision body
B, of K, vertices (zK,, +1to 2K, + K,, x € N) from the
same sub-tree of level n occupies a voxel v, then the occupation
list of v needs to store only one pair of (n — 1, ) rather than K,
pairs of (n,-), because the first n — 1 joints already make B,
unavoidably occupy voxel v. We “promote” the occupation list
from level n to n — 1 if such axial symmetry occurs.

D. Motion Planning Using HDRM

With the HDRM created and loaded, our goal is to efficiently
solve motion planning queries online in different environments.
The three main steps are as follows.
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TABLE I
ROBOT KINEMATIC ANALYSIS FOR CREATING HDRM.

Robot s (m) K,

URS 0.1 {37,36,21,9,7,1}
0.05 {52,51,30,12,9,1}

LWR 0.1 {35,20,21,10,7,2,1}
0.05  {49,27,29,14,10,2,1}

1) Collision Update: First, we create a voxelized environ-
ment to represent the discretized workspace, and then apply
conventional collision checking on this voxelized environment
against the real collision environment to find the list of voxels
that are occupied by the obstacles. For each occupied voxel, we
iterate though its occupation lists and invalidate vertices in the
hierarchical structure accordingly.

2) Connecting Start/Goal to Roadmap: The start and goal
vertices Vsiqrt, Vyoar are required for the graph search algo-
rithm, which are the closest valid vertices to the start and goal
configurations Qssqrt, Qgoql- Traditionally, this involves com-
paring the distance between a given configuration q and all
vertices in the roadmap and finding the one with the shortest
distance. As we will show later, such process could be very
slow for a roadmap with a large number of vertices. In our
approach, instead of searching though all vertices, we can ana-
Iytically compute the closest one. Given a configuration q, we
can easily get the closest hierarchical configuration Ko scs¢ (V).
Then, the index of closest vertex V.j,scs¢ can be found using
Algorithm 2.

3) Shortest Path Searching: The last step is to find a valid
path on the roadmap connecting Vi;q,; and V,,,. The A*
shortest path searching algorithm is used. We implemented the
sequential version of A* using a single CPU-thread. Paralleliza-
tion is not the main focus of this letter, however, we believe that
parallel version of Dijkstra or A* algorithms would be more
efficient [14].

IV. EXPERIMENTS

The proposed HDRM method is benchmarked against the
classical DRM approach and standard sampling-based planners
(SBP) in various scenarios using two different fixed-base ma-
nipulators: a 6-DoF Universal Robot URS and a 7-DoF KUKA
LWR. The evaluation was performed using an Intel Core i7-
6700 K 4.0 GHz CPU with 32 GB 2133 MHz RAM, and the
KUKA LWR for hardware experiments.

A. Experimental Setup

Given the robot model, first K, is calculated using (7)—(9), as
shown in Table I. Two different workspace voxel resolutions are
used, s = 0.1 m and s = 0.05 m. Smaller s leads to greater K,
and more samples are required to densely cover the space. For
the KUKA LWR robot, the off-line construction time is roughly
30 minutes with s = 0.1 m and 5-6 hours with s = 0.05 m. We
have also implemented classical DRM methods for comparison.
To achieve resolution completeness, we generate the vertices by
uniformly sampling in the configuration space and apply no
roadmap compression technique. Three classical DRM datasets
are created with different number of vertices: 1,000 (DRM,),
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TABLE II
COMPARISON BETWEEN CLASSICAL DRM AND HDRM

Robot & No. Vertices No. Edges s (m) Memory size
Method (MB)
URS DRM 1,000 6,336 0.1 2.8
0.05 13.6
10,000 61,274 0.1 22.3
0.05 104
200,000 1,200,956 0.1 356
0.05 1593
URS 1,762,236 10,573,416 0.1 8.5
HDRM 8,592,480 51,554,880 0.05 145
LWR DRM 1,000 6,369 0.1 79
0.05 334
10,000 62,031 0.1 70
0.05 280
200,000 1,216,755 0.1 1239
0.05 4793
LWR 2,058,000 14,406,000 0.1 16.7
HDRM 10,742,760 75,199,320 0.05 266

Fig. 8. Random problems in environments with different workspace obstacle
densities. (a) Obstacle density 0.1%. (b) Obstacle density 0.5%. (c) Obstacle
density 1%. (d) Obstacle density 5%. The highlighted trajectories are valid
solutions found by HDRM.

10,000 (DRM,;) and 200,000 (DRM,). A K-nearest neighbor
search based on the configuration space Euclidean distance with
K =10 is then applied to find the edges in the roadmap.

B. Memory Requirements

As highlighted in Table II, the HDRM scales exponentially
with roadmap size while the memory requirement is much lower
compared to classical DRM. In the case of the URS robot with
0.1 m voxel size, HDRM can store over 1.7 million vertices and
10 million edges using only 8.5 MB of memory, which is even
less than the memory required for classical DRM to store only
10,000 vertices. In the LWR scenario with 0.05 m voxel size,
the HDRM stores over 10 million vertices and up to 75 million
edges using only 266 MB of memory whereas the memory size
for classical DRM to store 200,000 vertices is over 4.7 GB.

C. Evaluation of Motion Planning

We benchmarked the performance of eight candidate meth-
ods: three classical DRM methods, DRM,, DRM,; and DRM_,;
four standard sampling-based planners, i.e., RRT, PRM, Single-
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TABLE III
EVALUATION OF 8 CANDIDATE MOTION PLANNERS, SHOWING THE SUCCESS RATE OF SOLVING 1000 PROBLEMS IN RANDOM VALID ENVIRONMENTS, FOLLOWED
BY THE AVERAGE SOLVING TIME OVER THE SUCCESSFUL CASES (IN MILLISECONDS)

Method Obstacle density 0% Obstacle density 0.1%  Obstacle density 0.5% Obstacle density 1% Obstacle density 5%
Success Time (ms) Success Time (ms) Success Time (ms) Success Time (ms) Success Time (ms)
Standard RRT 100% 13.392 99% 22.708 92% 325.21 82% 1036.1 36% 1893.6
SBP PRM 100% 5.7416 100% 4.5041 100% 322.86 99% 656.09 34% 3386.4
SBL 100% 6.8909 100% 14.775 100% 82.473 100% 273.96 31% 4439.4
RRTConnect  100% 1.1930 100% 2.1220 100% 10.117 100% 48.926 74% 1723.7
Classical DRM, 100% 0.1564 92.2% 0.7108 65.6% 0.7911 39.0% 1.2403 1.6% -
DRM DRM,,, 100% 0.3123 93.9% 0.8779 69.5% 1.0203 48.9% 1.5221 3.6% -
DRM, 100% 3.4152 95.7% 4.3431 74.7% 6.5206 53.0% 9.2316 3.3% -
Hierarchical DRM 100% 0.2759 100% 0.8574 100% 1.5813 100% 3.7152 100% 15.506
All algorithms are given 10 seconds to solve each problem.
Query Bi-directional Planning with Lazy Collision Checking TABLE IV

(SBL) [8], and RRTConnect; and finally the proposed HDRM.
For DRM/HDRM, the datasets of the LWR robot with 0.1 m
voxel resolution are used. For standard sampling planners, we
use the standard implementations from the OMPL library [21]
and the FCL library [22] for explicit online collision checking
with all parameters set to library defaults.

Five different categories of environments with random obsta-
cles were created. From simple to complex, these environments
have 0%, 0.1%, 0.5%, 1% and 5% of the whole workspace
occupied by obstacles, where the latter four are illustrated in
Fig. 8. The environments with 1% and 5% obstacle densities
are extremely complicated for any kind of motion planning
algorithm. We have created 1000 random valid problems for
each category. Each problem has a valid start and goal states,
and at least one trajectory connecting these two. To guarantee
this, a random self-collision-free trajectory is generated in an
empty space, which is then populated with obstacles that are
not colliding with the trajectory. All algorithms are given 10
seconds to solve each problem. Since all problems are solvable,
reporting no solution or exceeding the time limit is considered a
failure.

Evaluation results are detailed in Table III. As a baseline, all
algorithms achieve 100% success rate in free space. The suc-
cess rate of the classical DRMs falls below 100% when the
environment is populated with only a few obstacles (0.1% ob-
stacle density). The SBP methods are generally slower due to
explicit collision-checking for every sample which is very time
consuming. In more complicated environments (0.05% and 1%
obstacle densities), the success rate of classical DRM methods
decreases significantly. SBP methods still achieve reasonable
success rates, however, the planning time increases consider-
ably. HDRM performs better compared to all other methods in
complicated scenarios in terms of both success rate and plan-
ning time. In the extreme cases with 5% obstacle density, we
do not show the average planning time for the classical DRM
methods as the success rate is too low. All SBP methods also
report lower success rates and much longer planning times. On
the contrary, HDRM constantly achieves 100% success rate in
these extremely constrained environments.

It is interesting that DRM,. has a much smaller roadmap than
HDRM, but takes longer time to find a solution even in free
space. We break down the DRM/HDRM planning time into

BREAKDOWN OF COMPUTATIONAL TIME (IN MICROSECONDS)

Obstacle ~ Method Roadmap update Planning Total
density
Coll. Remove Connect A* search
check  invalids roadmap
0% DRM, 141.6 0 14.17 0.581 156.4
DRM,,, 170.1 0.626 3123
DRM,. 3273 0.698 3415
HDRM 0.229 134.1 275.9
0.1% DRM, 694.8 1.665 13.77 0.557 710.8
DRM,,, 18.71 163.8 0.601 877.9
DRM,. 435.0 3212 0.711 4343
HDRM 17.48 0.267 144.9 857.4
1% DRM, 1212 13.92 13.32 0.607 1240
DRM,,, 145.5 163.5 0.745 1522
DRM. 4728 3290 1.021 9231
HDRM 177.9 0.233 2325 3715

separate components, as in Table IV, and the time is given in
microseconds. The collision check takes 141.6 microseconds in
free space, which is basically the overhead of communication
and function calls. We use FCL for explicit collision checking
where the time increases as expected in more complicated envi-
ronments. Classical DRMs with more vertices and edges require
much longer time to remove invalid roadmap parts, whereas the
HDRM is able to do so relatively faster, considering the enor-
mous number of vertices and edges. Another expensive step
of classical DRMs is connecting the roadmap, which increases
exponentially with the number of vertices. After connecting
the roadmap, running A* search is actually very fast since the
roadmap size is relatively small. On the other hand, the time
for connecting the roadmap is negligible for HDRM since the
closest vertices can be analytically computed as elaborated in
Section III-D2. However, the searching takes longer due to the
enormous roadmap size.

D. Experimental Validation on Robot Hardware

We further validate the HDRM method on a 7-DoF KUKA
LWR manipulator fitted with the SCHUNK Dexterous Hand
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Fig. 9. Experiments on a 7-DoF KUKA LWR robotic arm fitted with a
SCHUNK Dexterous Hand. (a) Reaching into a confined shelf. (b) Fetching
object in distance.

2.0. The dataset was generated with s = 0.05 m voxel resolu-
tion. Four Microsoft Kinect One RGB-D sensors were fused
to sense the environment and create an OcTree representation
for collision checking. It shall be noted that due to the lim-
itation of the out-of-the-box sensing devices and algorithms,
the real experiment setup was limited to simpler environments
compared with the simulation benchmark. In our supplementary
video (https://youtu.be/4AzbmiTI1iE), we demon-
strate challenging motions in three different, highly constrained
environments: reaching into a confined shelf space and grasp-
ing a target object [see Fig. 9(a)]; retrieving an object through a
frame [see Fig. 9(b)]; and moving an object from within a cage
(see Fig. 1).

V. CONCLUSION

This letter first provided a theoretical proof for the resolu-
tion completeness of a deterministic roadmap with a discretized
workspace. We then presented a novel such method, the Hi-
erarchical Dynamic Roadmap (HDRM), for real-time motion
planning in complex environments. The HDRM is able to en-
code large numbers of vertices and edges in a memory efficient
manner that allows the algorithm to be resolution complete. An
extensive benchmarking shows that HDRM can find valid mo-
tion plans in extremely complicated environments in real-time
and empirically validates that the algorithm is resolution com-
plete. Experiments on the KUKA LWR robot further demon-
strate that our method is capable of incorporating live sensing
information and providing collision-free trajectories suitable for
tackling practical problems.

Both DRM and HDRM compute solutions in static environ-
ments, which can be different between planning queries but need
to be static during execution—they inherently do not adapt to
runtime changes. Since HDRM guarantees resolution complete-
ness and is able to plan in real-time (few milliseconds or less),
the future work will focus on the implementation of online
adaptation/re-planning framework with feedback for applica-
tions such as real-time interaction between human and robot in
a shared workspace similar to the work in [23].
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