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Abstract. In this research chapter, we will present a software toolbox
called EXOTica that is aimed at rapidly prototyping and benchmark-
ing algorithms for motion synthesis. We will first introduce the frame-
work and describe the components that make it possible to easily define
motion planning problems and implement algorithms that solve them.
We will walk you through the existing problem definitions and solvers
that we used in our research, and provide you with a starting point
for developing your own motion planning solutions. The modular ar-
chitecture of EXOTica makes it easy to extend and apply to unique
problems in research and in industry. Furthermore, it allows us to run
extensive benchmarks and create comparisons to support case studies
and to generate results for scientific publications. We demonstrate the
research done using EXOTica on benchmarking sampling-based motion
planning algorithms, using alternate state representations, and integra-
tion of EXOTica into a shared autonomy system. EXOTica is an open-
source project implemented within ROS and it is continuously integrated
and tested with ROS Indigo and Kinetic. The source code is available
at https://github.com/ipab-slmc/exotica and the documentation in-
cluding tutorials, download and installation instructions are available at
https://ipab-slmc.github.io/exotica.

Keywords: motion planning, algorithm prototyping, benchmarking, op-
timization

1 Introduction

The ROS community has developed several packages for solving motion plan-
ning problems such as pick-and-place (MoveIt! [1]), navigation [2], and reactive

https://www.ed.ac.uk/informatics
https://github.com/ipab-slmc/exotica
https://ipab-slmc.github.io/exotica
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Fig. 1. Example task of computing the inverse kinematics for a robot arm.

obstacle avoidance [3]. These tools are easily accessible to the end-user via stan-
dardized interfaces but developing such algorithms takes considerable effort as
these interfaces were not designed for prototyping motion planning algorithms.
In this chapter, we present EXOTica, a framework of software tools designed
for development and evaluation of motion synthesis algorithms within ROS. We
will describe how to rapidly prototype new motion solvers that exploit a com-
mon problem definition and structure which facilitates benchmarking through
modularity and encapsulation. We will refer to several core concepts in robotics
and motion planning throughout this chapter. These topics are well presented
in robotics textbooks such as [4] and [5]. This background material will help you
to understand the area of research that motivated development of EXOTica.

Our motivation to begin this work stems from the need to either implement
new tools or to rely on existing software often designed for solving a problem
other than the one we intended to study. The need to implement and test new
ideas rapidly led us to the specification of a library that is modular and generic
while providing useful tools for motion planning. A guiding principle hereby is
to remove implementation-specific bias when prototyping and comparing algo-
rithms, and hitherto create a library of solvers and problem formulations.

In this chapter, we will use a well-known algorithm as an example in order
to explain how to use and extend the core components of EXOTica to explore
novel formulations. Consider a robot arm mounted to a workbench as shown in
Figure 1. The arm consists of several revolute joints actuated by servo motors
moving the links of the robot body. A gripper may be attached to the final
link. The task is to compute a single configuration of the robot arm which will
place the gripper at a desired grasping position—i.e. our example will follow the
implementation of an inverse kinematics solver. Once the problem and motion
solver have been implemented, we can compute the robot configuration using
EXOTica with the following code:
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#include <exotica/Exotica.h>

using namespace exotica;

int main(int argc , char **argv)

{

MotionSolver_ptr solver = XMLLoader :: loadSolver("{

exotica_examples }/ resources/configs/example.xml");

Eigen:: MatrixXd solution;

solver ->Solve(solution);

}

This snippet shows how little code is required to run a motion planning
experiment. We load a motion solver and a problem definition from an example
configuration file located in the exotica examples package, allocate the output
variable, and solve the problem using three lines of code.1 What this snippet does
not show is the definition of the planning problem, the implementation of the
algorithm and an array of other tools available in EXOTica. This code and most
of the rest of this chapter will focus on motion planning. However, we view motion
planning and control as two approaches to solving the same motion synthesis
problem at different scales. For example, the problem in Figure 1 could be viewed
as an end-pose motion planning problem as well as operational space control,
when executed in a loop. This allows us to formulate complex control problems
as re-planning and vice versa. EXOTica provides the tools to implement such
systems.

To motivate and explain the EXOTica software framework, we focus on how
it can be used in research and prototyping. The first part of this chapter will
describe how problems and solvers are defined, and it will provide an overview of
the library. The second part of the chapter will demonstrate how EXOTica has
been used to aid motion planning research and it will help you to understand
how EXOTica may be useful for your research and development.

2 Overview

Prototyping of novel motion planning algorithms relies on defining mathematical
models of the robotic system and its environment. To aid this process, EXOTica
provides several abstractions and generic interfaces that are used as components
for building algorithms. Figure 2 shows the three components central to algo-
rithm design in EXOTica: (1) a planning scene, providing tools to describe the
state of the robot and the environment, (2) a planning problem formally defining
the task, and (3) a motion solver. These abstractions allow us to separate prob-
lem definitions from solvers. In particular, motion solvers implement algorithms
such as AICO [6] and RRTConnect [7]. These implementations may perform

1 This and other basic examples with detailed explanation of each line of code, as well
as instruction how to download, compile and run them are available in our online
documentation at https://ipab-slmc.github.io/exotica/Installation.html.

https://ipab-slmc.github.io/exotica/Installation.html
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Fig. 2. The core concept of EXOTica highlighting the interplay of the planning scene,
problem solver, and efficient batch kinematics solver. Problem and task definitions are
generic across solvers and can be loaded easily from configuration files as dynamic
plug-ins without the need to recompile. Furthermore, the same problem can be solved
using a variety of baseline algorithms provided by EXOTica for benchmarking and
comparison.

optimization, randomized sampling, or any other computation which requires a
very specific problem formulation.

How the problem is formulated is fully contained within the definition of a
planning problem. Each algorithm solves exactly one type of motion planning
problem while one type of problem may be compatible with multiple solvers.
As a result, several algorithms can be benchmarked on the exact same problem.
When benchmarking two algorithms that are compatible with different types of
problems, the problems have to be converted explicitly. This is a useful feature
that makes it easy to track differences between problem formulations that are
intended to describe the same task.

All planning problems use the task maps as components to build cost func-
tions, constraints, or validity checking criteria. Task maps perform useful com-
putations such as forward kinematics, center-of-mass position calculation, and
joint limit violation error computation. To further support the extensibility of
EXOTica, the motion solvers and the task maps are loaded into EXOTica as
plug-ins. As such, they can be developed separately and loaded on demand.
One such example is the plug-in which wraps the sampling-based algorithms
implemented in the OMPL library [8].

Figure 2 also shows the planning scene which separates the computation of
kinematics from the computation of task related quantities.
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3 System model

To synthesize motion, we describe the system consisting of the robot and its
environment using a mathematical model. This system model may be kinematic
or it may include dynamic properties and constraints. EXOTica uses the sys-
tem model to evaluate the state using tools implemented inside the planning
scene. The diagram in Figure 2 shows the planning scene as a part of the plan-
ning problem where it performs several computations required for evaluating the
problem.

3.1 Planning scene

The planning scene implements the tools for updating and managing the robot
model and the environment. The robot model is represented by a kinematic
tree which stores both the kinematic and dynamic properties of the robot, e.g.
link masses and shapes, joint definitions, etc. The environment is a collection
of additional models that are not part of the robot tree but that may interact
with the robot. The environment may contain reference frames, other simplified
models (geometric shapes), and real sensor data based representations such as
pointclouds and OctoMaps [9]. The planning scene implements algorithms for
managing the objects in the environment (e.g. adding/removing obstacles) as
well as computing forward kinematics and forward dynamics.

The system is parametrized by a set of variables that correspond to control-
lable elements, e.g. the robot joints. The full state of the system is described
using these variables and we will refer to it as the robot state. In some cases,
only a subset of the robot state is controlled. We call this subset the joint group.
Analogous to the MoveIt! [1] definition of a move group, a joint group is a selec-
tion of controlled variables used for planning or control. From now on, whenever
we refer to a joint state, we are referring to the state of the joint group.

The system model may be kinematic, kino-dynamic2, or fully dynamic. The
robot state is then described by joint positions, joint positions and velocities, or
full system dynamics respectively. The system dynamics may be provided via a
physics simulator but this is outside of the scope of this chapter. We will only
consider the kinematic model for simplicity.

The system model is implemented as a tree structure mimicking the structure
implemented in the KDL library [10]. Figure 3 illustrates the kinematic tree
of a planar robot arm. Every node in the tree has one parent and possibly
multiple children. The node defines a spatial transformation from the tip frame
of the parent node to its own tip frame. Every node consists of a position offset
of the joint, a joint transformation, and a tip frame transformation (see the
KDL documentation [10]). The joint transformation is constant for fixed joints.
The transformations of all joints that belong to the controlled joint group are
updated based on the joint state. During the update, the local transformation of

2 Here, we define a kino-dynamic model as one which captures joint positions (kine-
matics) and joint velocities.
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Fig. 3. The planning scene stores the kinematic tree composed of the robot model and
the environment. The diagram shows a robot model which has two revolute joints J1
and J2 defined by joint angles θ1 and θ2 respectively, a base frame and an end effector
frame A. A grasping target is located at frame B. The root of the tree is at the world
frame. The grasping task can exploit the relative transformation MB

A .

the node is updated and the transformation of the tip w.r.t. the world frame is
accumulated. The nodes of the tree are updated in a topological order (from the
root to the leafs). This ensures that the tip frame of the parent node is always
updated before its children.

The EXOTica Scene implements a method for publishing the frames to
RViz [11] using tf [12] for debugging purposes. These frames can be visualized
using the tf and the RobotModel plug-ins.3

The system model provides an interface to answer kinematic queries. A query
can be submitted to the Scene, requesting arbitrary frame transformations. Each
requested frame has the following format:

– Name of the tip frame (Frame A)
– Offset of the tip frame
– Name of the base frame (Frame B)
– Offset the of base frame

Figure 3 illustrates an example scene. Any existing frame can be used to define
a base or a tip frame of a relative transformation. The response to the query will
then contain a transformation of the tip frame with respect to the base frame.

3 Use the tf prefix /exotica to visualize the robot model.
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If an offset is specified, each respective frame will be redefined to include the
offset. If a base frame is not specified, the world frame will be used by default.
Since all transformations of the tree nodes w.r.t. the world frame have been
computed during the update, the query computation only adds the tip frame to

the inverted base frame4 MB
A = Mworld

B

−1
Mworld
A . The Scene has been designed

to answer a large number of requests in batches. While some smaller problems,
such as simple kinematic chains, may be more costly to update, larger kinematic
trees with a large number of leaf nodes are handled more efficiently by simply
iterating over the requested frames.

The system model also computes derivatives of the spatial frames w.r.t. the
control variables. These are computed as geometric Jacobians (J) and Jacobian
derivatives (J̇). The Jacobian has six rows and a number of columns correspond-
ing to the number of controlled joints. Each column represents a spatial velocity
in form of a twist. The twist BtiA describes the linear and angular rate of motion
of the tip frame A w.r.t. the joint frame i expressed in the base frame B. We use
the notation with the expressed in frame in the left superscript. Using the twist
representation allows us to correctly compute spatial transformations using the
Lie group algebra [13].

The kinematic tree represents the robot kinematic model and the objects in
the environment. The robot model can be loaded from a pair of MoveIt! com-
patible URDF and SRDF files. The URDF file specifies the robot kinematics,
joint transformations and range of motion, frame locations, mass properties and
collision shapes. The SRDF file specifies the base of the robot (fixed, mobile, or
floating), joint groups, and collision pairs. The robot configuration created for
MoveIt! is fully compatible with EXOTica. The Scene also implements an inter-
face to populate the environment with collision objects from MoveIt! planning
scene messages and from MoveIt! generated text files storing the scene objects.
The Scene may load additional basic shape primitives, meshes, or OctoMaps.

In order to perform collision checking, a CollisionScene can be loaded as a
plug-in into a Scene. This allows for different implementations of collision check-
ing algorithms to be used as required and does not tie EXOTica to a particular
collision checking library. For instance, by default, EXOTica ships with two Col-
lisionScene implementations using the FCL library—one based on the stable
FCL version also used in MoveIt! and one tracking the development revision of
FCL. The CollisionScene plug-ins may hereby implement solely binary collision
checking, or additional contact information such as signed distance, contact (or
nearest) points, as well as contact point normals. This information is captured
and exposed in a so-called CollisionProxy.

Referring back to the example inverse kinematics problem, the planning scene
consists of the kinematics of the robot with a base link rigidly attached to the
world frame. We choose to use a simplified version following the DH parameters
of the KUKA LWR3 arm which we load from a pair of URDF and SRDF files.
This robot has seven revolute joints. The joint group will consist of all seven

4 Notation: the subscript and superscript denote tip and base frames respectively. MB
A

reads: transformation of frame A w.r.t. frame B.
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joints as we intend to control all of them. We will not be performing collision
checking in this experiment. The planning scene is initialized from an EXOTica
XML configuration file. The XML file contains the following lines related to the
setup of the planning scene:

<PlanningScene >

<Scene >

<JointGroup >arm</JointGroup >

<URDF>{exotica_examples }/ resources/robots/

lwr_simplified.urdf</URDF>

<SRDF>{exotica_examples }/ resources/robots/

lwr_simplified.srdf</SRDF>

</Scene >

</PlanningScene >

where the joint group parameter selects a joint group defined in the SRDF file by
name. The robot model is loaded from the URDF and SRDF files specified here.
When the paths are not specified, EXOTica attempts to load the robot model
from the robot_description ROS parameter by default. EXOTica additionally
allows to set ROS parameters for the planning robot description from specified
file paths if desired.

The system model provides access to some generic tools for computing kine-
matic and dynamic properties of the system. These tools have been designed for
performing calculations for solving a wide variety of motion planning problems.
The system modeling tools are generic but they can be ultimately replaced with
a more specific set of kinematics and dynamics solvers in the final deployment
of the algorithm. This is, however, outside of the scope of EXOTica.

4 Problem definition

EXOTica was designed for prototyping and benchmarking motion synthesis al-
gorithms. The main objective of our framework is to provide tools for construct-
ing problems and prototyping solvers with ease. To do so, we first separate the
definition of the problem from the implementation of the solver. Each problem
consists of several standardized components which we refer to as task maps.

4.1 Task maps

The core element of every problem defined within EXOTica is the function map-
ping from the configuration space (i.e. the problem state which captures the
model state, a set of controlled and uncontrolled variables, and the state of the
environment) to a task space. We call this function a task map. For example, a
task map computes the center-of-mass of the robot in the world frame. A task
map is a mapping from the configuration space to an arbitrary task space. The
task space is, in fact, defined by the output of this function. Several commonly
used task maps are implemented within EXOTica.



EXOTica 9

Joint position task map computes the difference between the current joint con-
figuration and a reference joint configuration:

ΦRef(x) = x− xref, (1)

where x is state vector of the joint configuration and xref is the reference con-
figuration5. The whole state vector x may be used or a subset of joints may be
selected. This feature is useful for constraining only some of the joints, e.g. con-
straining the back joints of a humanoid robot while performing a manipulation
task. The Jacobian and Jacobian derivative are identity matrices.

Joint limits task map assigns a cost for violating joint limits. The joint limits
are loaded from the robot model. The mapping is calculated as:

ΦBound(x) =


x− xmin − ε, if x < xmin + ε

x− xmax + ε, if x > xmax − ε
0, otherwise

, (2)

where xmin and xmax are lower and upper joint limits respectively, and ε ≥ 0 is
a safety margin. The Jacobian and Jacobian derivative are identity matrices.

End-effector frame task map captures the relative transformation between the
base frame B and the tip frame A:

ΦEffFrame(x) = MB
A , (3)

where MB
A ∈ SE(3) is computed using the system model using the Scene. We

use the task space vector data structure (described later in this section) to handle
storage and operations on spatial frames. The Jacobian of this task map is the
geometric Jacobian computed by the Scene.

End-effector position captures the translation of the relative frame transforma-
tion:

ΦEffPos(x) = PB
A , (4)

where PB
A is translational part of MB

A . The Jacobian of this task consists of the
rows of the geometric Jacobian corresponding to the translation of the frame.

End-effector orientation captures the rotation of the relative frame transforma-
tion:

ΦEffRot(x) = RB
A , (5)

where RB
A ∈ SO(3) is rotational part of MB

A . Similarly to the end-effector
frame task map, the storage and the operations on the resulting SO(3) space
are implemented within the task space vector. The Jacobian of this task consists
of the rows of the geometric Jacobian corresponding to the rotation of the frame.

5 We use notation x for scalar values, x for vectors, X for matrices, and X for vec-
torized matrices.
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End-effector distance computes the Euclidean distance between the base and tip
frames:

ΦDist(x) = ‖PB
A ‖. (6)

The resulting task map has the same function as the end-effector position map.
The output, however, is a scalar distance.

Center-of-mass task map computes the center-of-mass of all of the robot links
defined in the system model:

ΦCoM(x) =
∑
i

(Pworld
CoMi

mi), (7)

where Pworld
CoMi

is the position of the center-of-mass of the i-th link w.r.t. the
world frame, and mi is mass of the i-th body. The Jacobian is computed using
the chain rule. This task map can also be initialized to compute the projection
of the center-of-mass on the xy-plane. In this case, the z-component is removed.

Collision spheres task map provides a differentiable collision distance metric.
The collision shapes are approximated by spheres. Each sphere is attached to
the kinematic structure of the robot or to the environment. Each sphere is then
assigned a collision group, e.g. i ∈ G. Spheres within the same group do not
collide with each other, while spheres from different groups do. The collision
cost is computed as:

ΦCSphere(x) =

G∑
i,j

1

1 + e5ε(‖Pworld
i −Pworld

j ‖−ri−rj)
, (8)

where i, j are indices of spheres from different collision groups, ε is a precision
parameter, Pworld

i and Pworld
j are positions of the centers of the spheres, and

ri, rj are the radii of the spheres. The sigmoid function raises from 0 to 1,
with the steepest slope at the point where the two spheres collide. Far objects
contribute small amount of error while colliding objects produce relatively large
amounts of error. The precision parameter can be used to adjust the fall-off of
the error function, e.g. a precision factor of 103 will result in negligible error
when the spheres are further than 10−3m apart. The constant multiplier of 5 in
Equation (8) was chosen to achieve this fall-off profile.

In our example, we use the end-effector position task map. The task space
is therefore ΦEffPos(x) ∈ R3. The task map is loaded from the XML file. The fol-
lowing lines of the XML configuration file correspond to the task map definition:

<Maps>

<EffPosition Name="Position">

<EndEffector >

<Frame Link="lwr_arm_7_link" BaseOffset="0.5 0 0.5

0 0 0 1"/>

</EndEffector >

</EffPosition >

</Maps>
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Fig. 4. Task space vector data packing combining three position coordinates x, y, z ∈
R and a sub-vector containing a SO(3) rotation represented as a unit quaternion.
The subtraction calculation of two task space vectors y1 and y2 first converts the
quaternions into rotation matrices R1 and R2 and performs the rotation operation
R−1

2 R1. The result is then converted into angular velocities ωx, ωy, ωz and packed into
the output vector My. Notice that the dimensionality of My ∈ R6 and y1,y2 ∈ R7 are
different.

where the only parameter of the task map is a single relative spatial frame.
This frame defines the translation of the seventh robot link relative to the coordi-
nates (0.5, 0, 0.5) in the world frame.6 This example is only intended to compute
inverse kinematics, we have therefore chosen to only minimize the end-effector
position error. However, an arbitrary number of cost terms can be added by
adding multiple task maps to this problem definition. For instance, we could
easily add another task map to constrain the orientation of the end-effector.

The output of a task map is a representation of the robot’s state in the task
space. Most task spaces are Rn. As such, they can be stored and handled as
vectors of real numbers. However, some task maps output configurations in the
SO(3) or the SE(3) space. In this case, Lie group algebra [13] has to be used
to correctly compute the additions and subtractions in the task space. The task
space vector implements operations on task spaces. The task space vector is a
data structure that keeps track of SO(3) sub-groups within the stored vector.
The operations on this vector then implement the Lie group algebra. For ex-
ample, a spatial frame may be stored as a transformation matrix MB

A ∈ R4×4.
This matrix will be stored in the task space vector. Performing addition and
subtraction on the vector will then be incorrect. The correct transformation
is performed by a matrix multiplication. The task space vector keeps track of
transformations stored within its structure and applies the correct operations
on them. Furthermore, the result of subtraction is always a geometric twist,
e.g. MB

A − MB
C = BtCA. This makes it possible to multiply the result of this

operation with a geometric Jacobian, producing a geometrically correct relative

6 If no frame is specified, world frame is assumed by default. If a relative offset is not
specified, an identity transformation offset is assumed.
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transformation. This feature has been used in the implementation of the inverse
kinematics solver [14] and the AICO solver [15]. Additionally, a SO(3) rota-
tion can be represented and stored in different ways, e.g. as a unit quaternion
RQ ∈ R4 where ‖RQ‖ = 1, Euler angles RZYZ,RZYX,RRPY ∈ R3, angle-axis
representation RA ∈ R3 where ‖RA‖ = θ, rotation matrix R ∈ R3×3, etc. We
handle these representations implicitly. Each sub-group of the task space vector
stores the size and type of representation that was used. The operations on the
vector first convert the task space coordinates into a rotation matrix representa-
tion, then the correct spatial operation is applied and a twist is computed. As a
result the input and output dimension may vary, i.e. subtraction of two rotations
represented as rotation matrices is a function f(R1, R2) : R9 → R3. The result is
the angular velocity component of the twist. The task space vector is composed
by concatenating outputs of multiple task maps. Each task map specifies if its
output contains any components that have to be handled using the Lie group
algebra (see Figure 4).

The output of a single task map is a segment of the task space vector. The in-
put of a task map is the states of the robot model and environment as well as the
arbitrary number of frame transformations required for the calculations. These
are computed using the planning scene. The task map implements the mapping
within its update method. This method has 3 different overloads depending on
what order of derivative is requested: a) no derivative (e.g. in sampling), b) first-
order derivatives (e.g. Jacobian used in gradient descent), and c) second-order
derivatives. Not all overloads have to be defined, i.e. a collision checking task
map may only detect collisions but it will not provide any gradients (derivatives).
We exploit this for fast collision checking for sampling-based solvers [5].

The task map will update the task space vector and its derivatives when the
solver requires it. These updates are normally triggered by the solver and they
do not have to be called manually. This also ensures that the task space vector
is updated correctly. The collection of task maps is therefore central to formally
defining motion planning problems. How the output of the task map is used then
depends on the type of the planning problem.

4.2 Planning problems

A planning problem within EXOTica represents a specific formulation of a mo-
tion planning problem. Since every formulation has very specific advantages for
a particular type of application, the formulations may vary significantly. To pro-
vide a unified framework, we identify several categories of common features of
different types of problems.

Depending on how the system is modeled, we distinguish: a) kinematic, b)
kino-dynamic, and c) dynamic systems. We then categorize the problem based
on the state representation required by these types of systems: position (x), po-
sition and velocity (x, ẋ), and the full dynamic state (x, ẋ, ẍ, τ ,F ) where the
variables denote positions, velocities, accelerations, joint torques, and external
forces respectively. We then distinguish between planning spaces: a) configura-
tion space, and b) task space (e.g. end-effector position and orientation). These
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categories define how the state of the the system is stored. This affects both
memory layout and the format of the input to the solver (e.g. the start state has
to include joint positions and velocities).

Furthermore, we categorize the problem based on the type of the output.
The output type may include: a) single configuration (e.g. output of a inverse
kinematics solver), b) a time-indexed trajectory (e.g. output of trajectory op-
timization), or c) non-time indexed trajectory (e.g. output of a sampling-based
solver). Other types and subtypes of problems do exist. A time-indexed tra-
jectory may have fixed or variable number of time steps or a variable timing
between steps. The second category is related to the output type with respect to
the controls. Here we consider control paradigms such as position control, veloc-
ity control, and torque control. The output of a problem may therefore consist of
various combinations of position, velocity, acceleration, and torque trajectories.
We refer to this as the control type.

Finally, we consider types of common problem formulations, for instance:
An unconstrained quadratic cost minimization problem w.r.t. metric

Q as presented in [14]:

argmin
x

(f(x)>Qf(x)). (9)

A linear programming problem:

argmin
x

(Qx+ c) (10)

s.t. Ax ≤ b, (11)

Bx = b. (12)

A quadratic programming problem with linear constraints, e.g. used
by the authors of [16]:

argmin
x

(x>Qx+ c>x)

s.t. Ax ≤ b, (13)

Bx = b. (14)

A generic non-linear programming problem, e.g. as used in [17]:

argmin
x
‖f(x)‖2

s.t. g(x) ≤ 0, (15)

h(x) = 0. (16)

A mixed-integer non-linear programming problem with constraints,
such as MIQCQP presented in [18]:

argmin
x
‖f(x, i)‖2

s.t. g(x, i) ≤ 0, (17)

h(x, i) = 0, (18)

i ∈ N. (19)
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Planning Problem State Output type
space type representation type[

CSpace
] [

Unconstrained
] [

Kinematic
] [

EndPose
][

CSpace
] [

Unconstrained
] [

Kinematic
] [

TimeIndexed
][

CSpace
] [

Sampling
] [

Kinematic
] [

NonIndexed
][

CSpace
] [

NLP
] [

Dynamic
] [

TimeIndexed
]

Table 1. Naming convention of motion planning problems based on problem type
categories. Gray name components are omitted for brevity.

A sampling problem:7 which is common across several algorithms pre-
sented in [5].

arg
x
f(x) = True. (20)

A mixed sampling and optimization problem, e.g. as presented in [19]:

argmin
x
‖f(x)‖2

s.t. g(x) = True. (21)

These are just some of the commonly used formulations of motion planning
problems used across literature. EXOTica provides the tools and a generic struc-
ture for implementing these types of problem formulations.

EXOTica uses a problem naming system based on this categorization. The
names are constructed based on the four main categories: planning space, prob-
lem type, state representation and the output type. Table 1 shows how the name
is constructed. To achieve brevity, each category has a default type. The default
types are configuration space, sampling, kinematic, non-time indexed trajectory
respectively for each category in Table 1. When the problem falls within the
default type for a category, this type is omitted from the name. For example, a
problem of type SamplingProblem is referring to a configuration space sampling
problem using a kinematic robot model and returning a non-time indexed trajec-
tory. Similarly, NLPDynamicTimeIndexedTorqueControlledProblem is an example of
a fully specified problem corresponding to the one defined in [20]. Three sample
problem types which are implemented within EXOTica are highlighted here.

Unconstrained End-Pose Problem defines a problem minimizing the quadratic
cost using a kinematic system. The state is represented by joint configurations
and the output is a single configuration that minimizes the cost defined by

7 We refer to a problem with binary variables as a sampling problem because random-
ized or another type of sampling is required to solve them. These types of problems
often cannot be solved by numerical optimization because their constraints are not
differentiable.
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Equation (9). The cost function is composed of weighted components:

f(x) =
∑
i

ρi‖Φi(x)− y∗i ‖, (22)

where Φi(x) is the mapping function of the i-th task map as defined in Sec-
tion 4.1, y∗i is the reference or goal in the task space, and ρi is the relative
weighting of the task. By definition, This problem provides the first derivative
of the quadratic cost function. The derivatives of the task terms are provided by
the task map. Additionally, configuration space weighting W is specified. This
allows us to scale the cost of moving each joint (or control variable) individu-
ally. Optionally, a nominal pose xnominal is provided as a reference often used to
minimize secondary cost in case of redundancies. This type of problem can be
used for solving inverse kinematics problems as proposed in [14].

The example inverse kinematics problem is using this formulation. The full
problem definition contains the definition of the planning scene and the task
map as discussed previously. We also set the configuration space weighting W .
The problem is then fully defined using the following XML string:

<UnconstrainedEndPoseProblem Name="MyProblem">

<PlanningScene >

<Scene>

<JointGroup >arm</JointGroup >

<URDF>{exotica_examples }/ resources/robots/

lwr_simplified.urdf</URDF>

<SRDF>{exotica_examples }/ resources/robots/

lwr_simplified.srdf</SRDF>

</Scene>

</PlanningScene >

<Maps>

<EffPosition Name="Position">

<EndEffector >

<Frame Link="lwr_arm_7_link" BaseOffset="0.5 0

0.5 0 0 0 1"/>

</EndEffector >

</EffPosition >

</Maps>

<W> 7 6 5 4 3 2 1 </W>

<StartState >0 0 0 0 0 0 0</StartState >

<NominalState >0 0 0 0 0 0 0</NominalState >

</UnconstrainedEndPoseProblem >

The weighting W is set to reduce movement of the joints closer to the root
(root joint weight 7 to tip joint weight 1). We set the start and the nominal
configuration, or state, to a zero vector. This problem is now complete and we
can use it to compute the robot configuration which moves the top of the robot
to coordinates (0.5, 0, 0.5). EXOTica provides several useful tools that make
defining problems using XML more versatile. All strings are automatically parsed
as the required data types. Furthermore, file paths containing curly bracket
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macros will be replaced with catkin package paths, e.g. {exotica_examples} will
get replaced with the absolute path to the EXOTica package.8

Unconstrained Time-Indexed Problem defines a problem minimizing the quadratic
cost over a trajectory using a kinematic model of the system. The trajectory is
uniformly discretized in time. The time step duration Mt and number of time
steps T are specified. The system transition from one time step to another is
parametrized by the covariance of the state transition error W (analogous to the
weighting W used in the Unconstrained End-Pose Problem) and the covariance
to the control error H. These parameters define the evolution of a stochastic sys-
tem approximated by a linear model over time. See [21] for more details about
this model. The cost function is then defined as:

f(x) =
∑
t

∑
i

ρi,t‖Φi,t(x)− y∗i,t‖, (23)

where t ∈ (1, ..., T ) is the time index. This type of problem is suitable for use
with iLQG-like (iterative linear-quadratic Gaussian [22]) solvers and with the
approximate inference control (AICO) algorithm [15].

Sampling Problem defines a class of kinematic problems that do not require any
cost function. Each state is evaluated for validity but not for quality as described
in Equation (20). This type of problem also requires a goal configuration x∗. The
objective of the solvers is to compute a valid trajectory from the start state to
the goal state. The validity of each state is checked by applying a threshold ε
on the output of the task map: ρi(Φi(x)−y∗i ) < ε. The output trajectory is not
indexed on time and the number of configurations may vary between solutions.
This type of planning problem is used with sampling-based motion solvers, such
as RRT and PRM [5].

The updating of the task maps is always handled by the planning problem.
This ensures that all the storage of the task-related properties is consistent and
timely. Each problem class is also the storage container for all of the task related
data and parameters. For example, the UnconstrainedEndPoseProblem stores the
task weights ρ, the task map outputs Φ(x) and goals y∗ in form of a task space

vector, and the Jacobians of each task map J = ∂Φ(x)
∂x . Since each problem has a

different formulation and structure, how the data is stored may vary. However,
each problem has to fully contain all the data and parameters required by the
solvers. This ensures modularity and makes it possible to benchmark different
solvers on the same set of problems.

5 Motion solvers

The structure of a planning problem within EXOTica allows us to formally define
an interface for solving specific types of problems. The motion solver then takes

8 This feature combines regular expressions with the rospack library to parse catkin
package paths.
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the problem instance as input and computes the solution. How this computation
is performed depends entirely on the implementation of the solver. EXOTica
offers several built-in solvers.

In our example, we created a system model and an unconstrained end-pose
problem that uses this system model. We will now use our implementation of
the inverse kinematics solver to compute the solution.

The inverse kinematics solver implements the regularized, dampened Jacobian
pseudo-inverse iterative algorithm described in [14]. This algorithm minimizes
the cost function defined in Equation (22) by iteratively improving the current
solution until convergence as described in Algorithm 1.

Algorithm 1 IK solver

Require: C,α
1: (x0,xnominal,W,max iter, ε)← GetProblem
2: x← x0

3: iter ← 0
4: repeat
5: (Φ, J)← UpdateProblem(x)
6: J† ←W−1J>(JW−1J>+ C)−1

7: Mx← α
[
J†(f(x)− y∗) + (I − J†J)(xnominal − x)

]
8: x← x+ Mx
9: iter ← iter + 1

10: until ‖Mx‖ < ε and iter < max iter
11: return x

In Algorithm 1, x is the state of the robot, α is the convergence rate,
J = SJ(x) is the concatenated Jacobian matrix multiplied by a diagonal ma-
trix S = diag((ρ1, ρ2, ...)) constructed from the task map weights ρ, Φ is the
concatenated task space vector, I is the identity matrix, xnominal is the nominal
configuration that is achieved as a secondary goal in case of redundancies, W
is the configuration space cost metric or weighting, and C is the regularization.
The solver iterates until convergence (‖Mx‖ < ε) or until the maximum number
of iterations is reached. This algorithm implements a local cost minimization
method that requires access to the cost function f(x) and its first derivative

J(x) = ∂f(x)
∂x . The cost function and its derivative are provided by the uncon-

strained end-pose problem in line 5. Parameters C and α are properties of the
motion solver. Parameters x0,xnominal,W,max iter and ε are properties of the
planning problem and they are extracted using the GetProblem method. The
output of this solver is a single robot configuration solving the inverse kinematics
problem.

EXOTica was designed for development of new motion planning algorithms.
We provide two more solvers that can be used for benchmarks. The AICO solver
is the implementation of the Approximate Inference COntrol algorithm pre-
sented in [6]. This algorithm performs trajectory optimization on problems with
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a quadratic approximation of the cost, linear approximation of the system model,
uniformly discretized time axis, and no hard constraints. The complete algo-
rithm, including the pseudo code, is described in [6]. The implementation of
AICO within EXOTica uses the unconstrained time-indexed problem to calcu-
late and store all task related properties. The OMPL solver is a wrapper expos-
ing several sampling-based algorithms implemented within the Open Motion
Planning Library [8].

6 Python wrapper

The utility of the EXOTica framework is in fast prototyping of motion synthe-
sis algorithms. The modular structure of EXOTica provides tools for creating
new problem and solver types which can now be evaluated and compared with
competing algorithms. Setting up tests and benchmarks is straightforward as
all parameters of the algorithm are clearly exposed. To make this process even
more versatile, we provide a Python wrapper for EXOTica. The following code
shows how to initialize and solve our example inverse kinematics problem using
Python:

import pyexotica as exo

solver = exo.Setup.loadSolver(’{exotica_examples }/

resources/configs/example.xml’)

print(solver.solve())

The EXOTica Python wrapper is intended for instantiating problems and
solvers to provide a high level interface to the EXOTica tools. This interface
is suitable for creating planning services, benchmarks, and unit tests. All core
classes and methods are exposed.

7 Applications

The rest of this chapter will provide examples of how the different elements of
EXOTica are leveraged for prototyping and evaluating new algorithms.

7.1 Algorithm Benchmarking

The modularity of EXOTica enables us to create benchmarks comparing a va-
riety of problems and solvers. In [23], we construct such benchmark to evaluate
several sampling-based algorithms implemented inside the Open Motion Plan-
ning Library [8] (OMPL) on a set of reaching problems on a humanoid robot.
These algorithms were primarily designed for solving navigation problems and
motion planning for fixed base robot arms. However, we have applied these
methods to planning whole-body trajectories for manipulation in cluttered en-
vironments using humanoid robots.

Valid trajectories for humanoid robots can only contain states that are collision-
free while they also have to satisfy additional constraints such as center-of-mass
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(a) Reaching motion on the NASA
Valkyrie robot.

(b) Reaching motion on the Boston Dy-
namics Atlas robot.

Fig. 5. Collision-free whole-body motion generated in different environments with dif-
ferent robot models. The corresponding CoM trajectories are illustrated in the second
row (red dots). The benchmark is designed so that one can easily switch to new robot
platforms without extensive integration effort.

position, foot placement, and sometimes torso orientation. Generating collision-
free samples is straightforward by using random sample generators and standard
collision checking libraries. However, the additional constraints create a mani-
fold in the unconstrained configuration space. Generating samples which lie on
this manifold without having to discard a majority of them in the process is
non-trivial. A sampling bias has to be introduced to increase the probability of
generating correctly constrained samples. In our approach, a whole-body inverse
kinematic solver is employed to produce the constrained samples. We formulate
the inverse kinematics problems as a non-linear program (NLP):

argmin
x
‖x− xnominal‖2Q,

s.t. bl ≤ x ≤ bu,
ci(x) ≤ 0, i ∈ C (24)

where ‖x− xnominal‖2Q is the squared deviation from the nominal pose xnominal

with respect to a configuration space metric Q. The system is subject to lower
and upper bound constraints bl and bu, and a set of non-linear constraints C.
The solver is described in [16]. We will call this solver using the following routine
IK (x0,xnominal,C), where x0 is start state, xnominal is the nominal state and C

is the set of constraints.
The majority of algorithms implemented in OMPL perform three basic steps:

(1) sample a random state, (2) perform steering, (to compute a near state that
is close to the random state according to some metric), (3) append the near
state to the solution if it satisfies all constraints. To preserve compatibility with
these algorithms, we augment steps 1 and 2. In step 1, we sample a random
unconstrained configuration and return the constrained sample computed using
the inverse kinematics (see routine sampleUniform in Algorithm 2). In the second
step, we then compute the constrained near state using the sampleUniformNear

routine. The steering function then uses an interpolation routine to check if a
path from the current state to the near state is viable. We have augmented the
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Algorithm 2 Humanoid Configuration Space Sampling-based Planning

sampleUniform()

1: succeed = False
2: while not succeed do
3: x̄rand = RandomConfiguration()
4: xrand , succeed = IK (x̄rand , x̄rand ,C)

return xrand

sampleUniformNear(xnear , d)

1: succeed = False
2: while not succeed do
3: a = 0
4: while not succeed do
5: x̄rand = RandomNear(xnear , d)
6: Cextended = C

7: Cextended ← ‖xrand − x̄rand‖Q < a
8: (xrand , succeed) = IK (x̄rand ,xnear ,Cextended)
9: Increase a

10: if distance(xrand ,xnear ) > d then
11: succeed = False

return xrand

interpolate(xa,xb, d)

1: x̄int = InterpolateConfigurationSpace(xa,xb, d)
2: succeed = False
3: a = 0
4: while not succeed do
5: Cextended = C

6: Cextended ← ‖xint − x̄int‖Q < a
7: (xint , succeed) = IK (x̄int ,xa,Cextended)
8: Increase a

return xint

interpolation routine as shown in Algorithm 2. In EXOTica, a new problem type
is defined called the ConstrainedSamplingProblem. The constraints defined within
this problem are passed to the IK solver when a constrained solution is required.
The motion solver then instantiates the OMPL algorithm overriding the default
sampling and and interpolation methods with the ones defined in Algorithm 2.

The second category of problems perform the exploration in the task space.
Specifically, the space of positions and orientations of the gripper is used as the
state space. We call this space the end-effector space. The pose of the gripper does
not uniquely describe the configuration of the whole robot. Each gripper position
is therefore associated with a full robot configuration to avoid redundancies in the
representation. This type of planning problem is using a low dimensional state
representation but the connectivity of states depends on the configuration of the
whole robot. Therefore, each valid state lies on a manifold in the end-effector
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Algorithm 3 Humanoid End-Effector Space Sampling-based Planning

sampleUniform()

1: succeed = False
2: while not succeed do
3: ȳrand = RandomSE3 ()
4: Cextended = C

5: Cextended ← ‖ȳrand − Φ(xrand)‖ ≤ 0
6: xrand , succeed = IK (x̄rand , x̄rand ,Cextended)

7: yrand = Φ(xrand)
return yrand ,xrand

sampleUniformNear(ynear , d)

1: succeed = False
2: while not succeed do
3: ȳrand = RandomNearSE3 (ynear , d)
4: Cextended = C

5: Cextended ← ‖ȳrand − Φ(xrand)‖ ≤ 0
6: xrand , succeed = IK (xrand ,xnear ,Cextended)

7: yrand = ȳrand

return yrand ,xrand

interpolate(ya,yb, d)

1: ȳint = InterpolateSE3 (ya,yb, d)
2: succeed = False
3: b = 0
4: while not succeed do
5: Cextended = C

6: Cextended ← ‖ȳint − Φ(xint)‖ < b
7: xint , succeed = IK (xa,xa,Cextended)
8: Increase b
9: yint = Φ(xint)

return yint ,xint

space. This is a very similar problem to the constrained sampling problem in the
configuration space. To implement this, we augmented the solver by replacing the
sampling and steering steps of the algorithm with the inverse kinematics solver
as described in Equation (24). Additionally, we use the forward kinematics Φ(x)
to compute the gripper pose corresponding to a whole robot configuration x.
Algorithm 3 show the modifications to Algorithm 2 required to perform planning
in the end-effector space. We have implemented this type of problem in EXOTica
and we call it the ConstrainedEndEffectorSamplingProblem.

With the problem formulation in place, we created several environments con-
taining obstacles such as desks and shelves. We have also defined grasping targets
placed on top of the horizontal surfaces. Each environment was then tested with
two humanoid robot models: NASA Valkyrie and Boston Dynamics Atlas. Fig-
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ure 5 shows several scenarios used in the benchmark. We have performed 100
trials in each environment with each robot. We have collected data on computa-
tion time, task accuracy, and constraint violation. The results ultimately show
that existing (off the shelf) sampling based motion solvers can be used with
humanoid robots. The RRT-Connect algorithm outperforms all other methods
when planning in configuration space, with planning times averaging at 3.45s in
the most challenging test scenario. We present the complete benchmark and the
analysis in [23].

The benchmark described in this section was aimed at a specific aspect of
sampling-based motion solvers. EXOTica enabled us to perform this analysis
while maximizing the reuse of existing code. The problem and solver formulations
described in this chapter are suitable for creating benchmarks evaluating various
aspects of motion planning. In the next section, we explore and compare different
problem formulations and how EXOTica can be used to validate that a particular
formulation is suitable for solving a very specific task.

7.2 Dynamic Motion Adaptation and Replanning in Alternate
Spaces

Adapting motion to dynamic changes is an active area of research. Dynamic
environments cause existing plans to become invalid, and it is often necessary to
adapt an exiting motion or to re-plan the motion entirely. This process can be
computationally expensive when the problem is non-convex and contains local
minima. However, a highly non-linear and non-convex problem can sometimes
be simplified if we choose an alternate task space. A task space introduces a new
metric or even a new topology. As a result, motion that is very complex in the
configuration may be as simple as a linear interpolation in the appropriate task
space. Figure 6 illustrates the effect of using an alternate mapping. EXOTica
allows us to define such new task spaces.

In [24], we implemented a novel task map we call the Interaction Mesh.
To construct the interaction mesh, we define vertices, points attached to the
kinematic structure of the robot or the scene. We then define edges between the
vertices to create a mesh. Each edge represents a spatial relationship that has
to be preserved. In [24], the mesh is fully connecting all of the vertices. We then
compute the Laplace coordinate LG of each vertex p as

LG(p) = p−
∑
r∈∂Gp

rwpr∑
s∈∂Gp wps

,

wpr =
Wpr

|r − p|
, wps =

Wps

|s− p|
, (25)

where ∂Gp is the neighbourhood of p in the mesh G, and wpr is the weight
inversely proportional to the distance of vertices p, r and multiplied by the
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Fig. 6. A complex trajectory in the configuration space (left) becomes a linear trajec-
tory in an alternate space (right).

edge importance weighting9 Wpr. The weights are then normalized over the
neighbouring nodes s ∈ ∂Gp. The position of the vertices p, r and s is computed
using kinematics (e.g. p = Φ(x)). The Jacobian of the interaction mesh can be
derived using the chain rule.

In EXOTica, we define a task map which implements Equation (25). This task
maps the vertex positions into the space of their Laplace coordinates. We call
this the interaction mesh space. In the experiments presented in [24], we recorded
a reference trajectory in the interaction mesh space. We have then formulated an
unconstrained end-pose problem as defined in Section 4.2 to minimize the error
in this space. We employed the inverse kinematics solver described in Section 5
in a control loop to track the dynamically moving targets in real-time. We have
closed the control loop with motion tracking data streamed in real-time. Figure 7
shows the timelapse of this experiment.

Applying local optimisation methods in alternate spaces is a powerful tool.
We have achieved fast and robust motion transfer from a human demonstrator
to a robot using the interaction mesh and a motion capture suit (see Figure 8a).
This principle has been further studied in [25], where we introduce a more flexible
variant of the interaction mesh. We call this alternate representation the distance
mesh. Distance mesh captures the spatial relationships over edges, rather than
the vertices of the mesh. This allows us to encode obstacle avoidance and tar-
get reaching behavior more directly. We have demonstrated this technique by
performing a welding task, maintaining the contact of the welding tool with
the work piece, while reactively avoiding moving obstacles (see Figure 8b). This

9 The edge importance weight matrix allows us to further parametrize the represen-
tation. For example, high weighting between the target and the end-effector allows
us to perform accurate reaching and grasping.
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Fig. 7. The vertices and edges of the interaction mesh attached to the kinematic struc-
ture of the robot and parts of the dynamically moving obstacle (left), and the timelapse
of the optimised motion (right).

experiment also uses the unconstrained end-pose problem formulation and the
inverse kinematics solver described in this chapter.

In [24], we also explore a class of representations based on topology of the
work space. These alternate spaces abstract away the geometry of the space and
capture topological metrics such as winding (see Figure 8d), wrapping, and en-
closing volumes of space. We have applied these metrics to reaching and grasping
problems. Each of these representations introduce a space with a topology very
different to the topology of the configuration space. However, each of these spaces
is still implemented as a task map, and as such, it can be used with any solver
within EXOTica. This work was then extended in [26] to optimize area coverage
when moving robot links around an object of interest, such as 3D scanning and
painting (see Figure 8c).

The concept of encapsulation of the task map makes it straight forward to
define new task spaces. Constructing experiments to evaluate the utility of each
space therefore requires only very minimal implementation. This makes EXOT-
ica ideal for rapid prototyping of new task spaces and defining very specialized
problems. Once a suitable planning problem is identified, EXOTica can be used
to implement a motion planning service that can be integrated with sensing and
user interface modules to solve more complex tasks. We will describe this in the
next section.

7.3 Robust Shared Autonomy with Continuous Scene Monitoring

The level of autonomy of a robot is directly correlated with the predictability of
the task and environment. Robots executing a predictable task in a predictable
environment such as in a factory setting can work fully autonomously, while for
field robots where the environment changes unpredictably, teleoperation is still
the accepted gold standard with the human operators as the decision makers and
the robot acting as their extension. We focus on a hybrid approach called shared
autonomy. It is often perceived as a middle ground, combining autonomous se-
quences requested by the operator and executed by the robot. The operator
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(a) Motion transfer using interaction
mesh.

(b) Reactive obstacle avoidance us-
ing distance mesh.

(c) Wrapping an item using spatio-
temporal flux representation.

(d) Untangling a multi-link robot using
the writhe representation.

Fig. 8. Examples of implementations of different task spaces using the EXOTica frame-
work.

provides high-level decision making reducing cognitive load and improving the
reliability of the systems.

The work in [27] illustrates a complete framework and system application for
robust shared autonomy which builds extensively on EXOTica. This systems is
composed of four core components:
(1) A mapping module acquiring, filtering, and fusing several sources of real sen-
sor data and using it to continuously update the EXOTica planning and collision
scene.
(2) An implementation of the Inverse Dynamic Reachability Map (iDRM) pre-
sented in [28] in EXOTica and integration of the iDRM-based inverse kinematics
solver with sampling based motion planning.
(3) A user interface for synthesizing EXOTica planning problems, where the
user provides constraint sets for both inverse kinematics and motion planning.
(4) A scene monitoring service for detecting and assessing dynamic changes in
the environment in real-time and updating the map and the EXOTica planning
scene.
Figure 9 shows an overview of the system.

The details of the mapping and user interface components provide updates
for the EXOTica planning scene. The sensor data is being processed and filtered
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Fig. 9. Overview of the mapping, motion planning, scene monitoring and user interface
components with existing ROS-based navigation, control, sensor driver packages.

to produce an OctoMap that is used for collision avoidance. The details of this
process are described in [27]. Other collision objects such as CAD models of
known structures can be inserted into the EXOTica scene directly. The most
up-to-date snapshot of the scene is then used for motion planning.

The user interface also uses the scene monitoring and mapping components
to provide the user with a virtual view of the robot environment. The user
then specifies high-level goals, such as an object to grasp. The user interface
component will process this input and create a set of goals that may contain
a grasping target, a navigation target, and motion plan to pick-up or place an
item. We compute these goals using EXOTica.

Given a grasping target location from the user interface, we construct an end-
pose planning problem. Since the target location is known but the base of the
robot is not fixed, we invert the problem. We compute the location of the base of
the robot using the inverse kinematics solver. Here we use the reaching target as
a virtual fixed base and we compute an optimal location of the robot base. The
problem is formulated as iDRMEndPoseProblem. We exploit the iDRM structure
to compute collision-free inverse kinematics for the robot base as proposed in
[28,29]. We have implemented a dedicated solver for this type of problems. The
output of the solver is a collision-free robot configuration that we use as a goal
for sampling-based motion planning. Additionally, we use the computed robot
base location as a target for navigation. The motion planning is then performed
using the OMPL interface we have described in Sections 5 and 7.1.

The motion planning component is implemented as a ROS action server.
This creates a clean interface with the rest of the system. We have performed
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Fig. 10. (Left) The continuous scene monitoring continuously integrates fused and
filtered sensor data in an OctoMap and reasons about changes: Here, a human reaches
into the robot working space crossing the planned trajectory (key samples in blue), and
the robot halts execution (robot state in red). (Right) Candidate robot base locations
computed using iDRM (red and green cubes colored by reachability) and a the optimal
robot pose for grasping the red box selected by the user.

several experiments with the integrated system. Figure 10 shows snapshots of
the system performing a pick-and-place task on a bi-manual robot with a mobile
base.

8 EXOTica installation instructions

The up to date installation instructions are available at:
https://ipab-slmc.github.io/exotica/Installation.html

Example code is available within the exotica_examples package. We provide
several other examples solving different types of problems as well as applications
and tests within this package.

9 Conclusion

The utility of ROS lies in the modularity of its packages. With this in mind, EX-
OTica was developed as a tool to prototype, evaluate, and rapidly deploy novel
motion synthesis algorithms. Existing motion planning tools such as MoveIt!
provide mature algorithms and well defined but fairly restrictive interfaces. EX-
OTica complements this with a more generic and open architecture that allows
for rapid prototyping and benchmarking of algorithms at a much earlier stage
of development.

https://ipab-slmc.github.io/exotica/Installation.html
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