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Abstract—The ability of animals to interact with complex
dynamics is unmatched in robots. Especially important to
the interaction performances is the online adaptation of body
dynamics, which can be modelled as an impedance behaviour.
However, variable impedance control still continues to be a
challenge in the current control frameworks due to the diffi-
culties of retaining stability when adapting the controller gains.
The fractal impedance controller has recently been proposed to
solve this issue. However, it still has limitations such as sudden
jumps in force when it starts to converge to the desired position
and the lack of a force feedback loop. In this manuscript,
two improvements are made to the control framework to solve
these limitations. The force discontinuity has been addressed
introducing a modulation of the impedance via a virtual
antagonist that modulates the output force. The force tracking
has been modelled after the parallel force/position controller
architecture. In contrast to traditional methods, the fractal
impedance controller enables the implementation of a search
algorithm on the force feedback to adapt its behaviour to
the external environment instead of on relying on a priori
knowledge of the external dynamics. Preliminary simulation
results presented in this paper show the feasibility of the
proposed approach, and it allows to evaluate the trade-off that
needs to be made when relying on the proposed controller for
interaction. In conclusion, the proposed method mimics the
behaviour of an agonist/antagonist system adapting to unknown
external dynamics, and it may find application in computational
neuroscience, haptics, and interaction control.

I. INTRODUCTION

The dynamic dexterity of animals is far beyond the current
capabilities of artificial systems, despite their theoretical
limitation in information transmission and processing [1]—
[4]. An important limitation in state-of-the-art control frame-
works is the reduced performance and reliability when deal-
ing with highly variable dynamic interaction (e.g., contacts).
Here, a major limitation is the dependence of their stability
on an accurate interaction dynamics model; which inherently
is not easy to track with the unpredictability of real-world
interaction scenarios [5], [6]. Therefore, the identification
of a method to overcome such limitation is likely to have
a significant impact on the robustness of legged robots
such as quadrupeds and humanoids, haptic technologies,
exoskeletons, and rehabilitation systems.

One of the theories on how nature has overcome these
biological limitations is based on the theory that the body
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Fig. 1. Agonist/Antagonist muscles perform synergistic actions to control
the joints’ movements. The experimental evidence also confirmed that their
impedance is adjusted based on different tasks, and can be modulated online
by the contracting elements (CT) to adapt to external perturbations. The
proposed integration of a parallel force control with the fractal impedance
controller aims to reproduce similar capabilities. Our controller requires as
inputs desired force (Fy), desired position (x4), desired impedance profile
(Z4), and the feedback of the current position (x¢) and current force (F¢).

motor control acts as a hierarchical architecture of semi-
autonomous controllers [4], [7]. In this type of architecture,
each layer is accountable for the stability while accurately
executing the behaviour directed from the higher level con-
troller, while at the same time coordinating and verifying the
behaviour of lower level controllers. This can be observed
starting from the muscular level where each muscle contains
structures that can modulate its mechanical impedance [8]-
[11]. Moving to a higher level, motor synergies can be iden-
tified that co-activate muscles, often across multiple joints,
to produce desired body motions [1], [2], [4], [7], [12]. The
motor synergies themselves are identified at different hierar-
chies starting from a single agonist/antagonist behaviour to
more complex stereotyped movements that are implemented
in the coordination of complex actions, such as balance [4].
In summary, there is a multitude of studies indicating that
the motor control modulates the mechanical impedance of
the human body to adapt to the task requirements.

The identification of the ability of motor control to modu-
late the body impedance lead to theories based on the Port-
Hamiltonian framework [13]. However, their integration in a
complex hierarchical architecture of semi-autonomous con-
trollers is still an open issue. Furthermore, despite interaction
control based on the Port-Hamiltonian approach having been
proposed in the forms of impedance and admittance control,
there are still issues when dealing with variable impedance
and the interaction with complex external dynamics.

Impedance and admittance control differ on the methodol-
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Fig. 2. (a) Phase portrait of the fractal attractor. The trajectories that reach
a maximum displacement (¥yax) greater than 0.3 have been omitted in
the plot. (b) The controller behaves like an electrical circuit which has
two parallel lines with diodes oriented in opposite directions—this enables
to bypass Zcon, during divergence. The controller stability is achieved
guaranteeing the conservation of energy while switching from divergence
to convergence.

ogy used to decode the physical information exchanged from
the system with the environment [13]. Impedance control
transforms an incoming flow (i.e., velocity) into the desired
effort (i.e., force), while admittance control transforms the
incoming effort into the desired kinematics [13]. The sta-
bility of Port-Hamiltonian controllers relies on the ability
to track their energy exchange, which is challenging when
dealing with redundant systems and changing environmental
conditions. The approaches for tracking the energy are based
on projectors [5]. This makes these controllers susceptible to
changes in the task (e.g., contact, admittance, and impedance
changes) as well as singularities which is where these pro-
jectors can degenerate numerically [14].

The Fractal Attractor has recently been proposed to solve
this issue by using a passive variable impedance. The
controller stability is guaranteed by its passivity, which is
maintained using the spring energy map of the system state

[15], [16]. The damping component of the controller acts
only as an energy sink (i.e., reference velocity set to zero).
The controller relies upon an anisotropic variable impedance
redistributing the energy absorbed during divergence to con-
verge to the desired state rather than a limit cycle. Other
benefits of this controller are that (a) the impedance is
defined based on a desired force/displacement behaviour, (b)
it can be safely tuned online, (c) multiple controllers can
be superimposed without affecting stability, and (d) it can
be calibrated to account for the physical limitation of the
robot guaranteeing the global stability of the controller. The
current formulation has two major limitations which are (1)
the lack of a feedback loop on the force, and (2) the lack
of force homogeneity when the controllers switch between
divergence and convergence phases.

This manuscript proposes a new impedance profile formu-
lation inspired by the agonist/antagonist configuration of the
muscles to solve the force homogeneity issue. We introduce a
force-feedback, also occurring in biological actuation, imple-
mented using a reinterpretation of the parallel force/position
control force feedback in traditional impedance controllers.
The controller is validated in a Simulink (Mathworks Inc,
USA) system simulation to evaluate its ability to adapt its
behaviour to the interaction with unknown environmental
dynamics.

II. FRACTAL CONTROLLER

The Fractal Impedance Controller is based on an attractor
that alters its topology between its divergence and conver-
gence phases (Fig. 2a) [15]. During divergence, the controller
stiffness is described as a spring centred in the desired po-
sition. During convergence, the controller acts as a constant
spring centred in the mid-point between the desired position
and the maximum displacement (%p,x) reached during the
divergence phase [15]. Such behaviour is obtained with an
algorithm that mimics the electrical equivalent as shown in
Fig. 2b. The behaviour during divergence is determined by
Zpiv, while an additional impedance Zc,,, is added in series
for convergence. Thus, the system behaves like having a
total impedance equal to Z7,; = Zpjy + Zcony- Furthermore,
the fractal impedance controller does not have a damping
component, which implies that the controller generates a
conservative energy field centred in the desired pose. It
shall be noted that a damping component can be introduced
without affecting stability as long as the desired velocity is
equal to zero [15].

This approach has been inspired by the agonist/antagonist
muscles and the concept of dynamic primitives, which can
be seen as libraries of stereotyped basic behaviours that can
be superimposed to achieve complex actions [1], [2], [4],
[17], [18]. Specifically, the hypothesis was that it should be
possible to embed stability into the control algorithm itself
identifying a stereotyped behaviour that could scale with
the energy accumulated in the system without compromising
stability. In other words, is it possible that what we observe
as variable impedance in humans is produced by the scaling
of intrinsically stable stereotyped embedded systems?
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(a) The difference between the energy released in the environment from the fractal impedance and the proposed method for obtaining smooth

force transition during inversion. As a consequence, an increase in the energy released into the environment emerges in the interval (¥, &), indicated in
green. On the other hand, there is a reduction of the released energy (in red), once the force saturates when |%| is greater than %,. (b) The forces/torques
generated at the switching point by the two impedance elements are perfectly superimposed when using the proposed method.

Following such a change of perspective, the problem is
transformed into one of how to embed a smooth trajec-
tory into the attractor of the impedance controller itself.
The implemented solution, inspired by biology, has been
alluded to earlier [15], enabling the tuning of the desired
force/displacement characteristics. However, these character-
istics currently come at the cost of a sudden change in force
magnitude while starting to converge and the lack of force
feedback loop required for tasks such as haptic exploration.

A. Altering Fractal Impedance Profile for Force Homogene-
ity

The fractal attractor proposed in [15], [16] uses the
conservation of energy principle to calculate the desired
impedance for convergence, leading to a change of the
gradient of energy at the inversion point that results in a
sudden change in the exerted force. A solution to this issue
may be provided by considering an agonist/antagonist control
strategy, in which the two systems are impedance connected
in parallel and the total produced effort (i.e., force) can be
corrected by modulating the antagonist impedance, which
alters the energy output through the port and smooths the
force transition. However, the stability of the controllers
can be retained only and only if this energy difference is
known and, therefore, it can be accounted for in the stability
analysis. As detailed in [15], a non-smooth Lyapunov’s
candidate for the system must be laterally unbounded and
have a bounded finite derivative. To identify the energy
profile, a desired output force profile of the spring during
divergence has been selected, following the profile presented
in [16]:

Ko, %] < 5o
. _ k=%
Fk = sgn()f)(AF(l—e )+ y o (1)
+Ko¥o), o < \x| < Xp
sgn (%) Fvtax Otherwise

where Kj is the constant stiffness, AF = (Fyax — Ko-%0), %o
is the displacement that triggers the non-linear spring to
activate, X, indicates the displacement associated with the
force saturation, Fi is the saturation force, b = (¥, — %)) /S
is the characteristic length of the sigmoidal function. S =20
controls the saturation velocity ensuring that the force is
at 99.9% of F,,: before reaching %,. The energy profile
associated with this force profile is as follows:
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If these profiles are used in the fractal impedance controller
algorithm introduced in [15], they generate a non-smooth
transition while switching from divergence to convergence.
The force transition can be smoothed using the Algorithm 1.
However, this algorithm introduces a discrepancy between

Otherwise



the accumulated and the released energy (Figure 3a). The
virtual antagonistic muscle is introduced to account for the
energy discrepancy in the stability analysis. The Lyapunov
proof is included in Appendix A, which updates the proof
given in [15].

Algorithm 1: Mono-dimensional Fractal Impedance
Control
input : Divergence/Convergence, Fx (%), Ex (¥Max ),
IMax, X, FK(iMax)
output: 4,
1 if diverging from x; then

2 | he=Fk(X)

3 else

4 if ¥ <= xo then

5 \ he = Fpa(%) = %(i— 0.5%uax )
6 else

7 \ he = Fpa(%) = %(x— 0.5%Max)
8 end

9 end

B. Force Feedback

A system interacting with an external entity does not
only affect the environment but it is also affected by it.
Therefore, the feed-forward dynamic interaction enabled by
the impedance controller is not sufficient to guarantee the
chosen behaviour during interaction. In fact, the environ-
mental impedance will act as a parallel impedance to our
controller modifying the resultant behaviour, which implies
that we need to adjust ¥ to achieve the desired interaction
force. An easy to visualise analogue is considering two
springs pushing against each other, with one having a tunable
stiffness. It is commonly known that the equilibrium point
depends on their relative stiffness. Therefore, if we do not
directly alter the exchanged force, we need to adjust the
stiffness which also alters the equilibrium point.

An impedance controller interacting with an infinitely
rigid system (i.e., non-deformable) produces the force at
the interface predicted by the selected impedance model.
However, the displacement (X) required to achieve the same
force will change when interacting with non-rigid systems,
based on their relative stiffness. The parallel Force/Position
control was proposed to solve this issue by adjusting the
desired position based on a model of the interaction dynamics
[19]. The major drawback of that approach was that being
applied to a traditional impedance controller, an accurate
model and a proper tuning of the impedance controller
are essential for retaining the stability. However, the fractal
impedance controller does not have such limitations, because
the stability condition is embedded into the topology of
controller attractor, cf. Fig. 2. This in turn implies that the
availability of an accurate expectation of the environment
will only enable a more efficient interaction. Thus, an online
force feedback-based haptic exploration (Algorithm 2) can be

deployed without introducing any concerns for the controller
stability.

Algorithm 2: Haptic Exploration

input : Fy, Ko, 0, F(t—1), & xq, x8(t — 1)
output: xI(r)

z — fa
1 5x0 =%
2 5)?8 = 06X
3 if F(r—1) = Fy(¢) then
4 | if |7] < |xy4| then
5 ‘ xg(t):xd+3io
6 else

Fy(t)—F(t—1)) o

. Ay — (Bl )Fd(tg ))ng
8 M) =xl(r—1)+Ax
9 end
10 else
1 ‘ A =x(r—1)
12 end

where: t is the discrete time variable,

Fy is the desired force,

x4 is the displacement from the reference position
that is expected when making contact with the
environment,

o = 0.01 scaling factor for the force scanning
resolution.

Lastly, it shall be noted that the proposed algorithm is
made possible because within the fractal impedance con-
troller the conservative field determined by the stiffness is
the only source of energy. Therefore, the only interaction that
can alter the topology generated by the controller stiffness
is the coupling with an external non-infinite stiffness. On
the other hand, the mass and damping component will affect
only the path taken for converging to the desired behaviour.

III. EXPERIMENTAL DESIGN

A simulator is a good approach for the preliminary evalu-
ation of the proposed method because it allows direct control
of the mechanical properties of the components involved
without building a dedicated structure. This allows us to
study how changes in properties of the external dynamics
affect the controller performance and vice versa. The simu-
lations are realised in Simulink (MathWorks, Inc). The solver
is the ode4 with a constant time-step of 10 ms for continu-
ous contact dynamics. The variable step solver ode23t has
been used due to issues encountered in solving the model of
the switching contact dynamics. The simulations were run
using an Intel i7-7700HQ CPU with 16 GB of memory.

The simulation setup is described in Fig. 4, and the system
dynamics simulated for 10s. The parameters that have been
kept unchanged across all the simulation are Fypax = 15 Nm,
F =0.11 rad, % = 0.10 rad and 7 = 10 kgms>. The imple-
mented hard-stop has no transition region for the dynamics
and an undamped rebound. The experiments presented in this
paper target the study of the influence of the environmental
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Fig. 4. Simulation experimental setup. The motor, inertia and sensors have
been implemented using an ideal torque source, inertia, and ideal sensors
included in the Simscape library. The spring damper behaviour has been
implemented using a rotation hard-stop also present in the Simscape library
to implement the contact interaction.

stiffness changes on the controller performance and the
evaluation of the effect of contact estimation error on the
controller’s performance.

Welded Parallel Connection To Spring-Damper Mecha-
nism: The simulation studies a system controlled by the
proposed method “welded” to a spring-damper mechanism.
The environmental parameters have been set to Kepy =
100 Nmrad~! and D¢,y = 189.7 Nmsrad~!. The values
of Ko chosen for this simulation are 0.1, 10, 100, and
1000 Nmrad~'. The strongest descriptors of the qualitative
behaviour of the system are the relative stiffness and damping
between the controller and the environment. The parameters
selected for the experiments cover the different emergent
behaviours.

Contact Interaction with a Spring-Damper Mechanism:
The controller constant stiffness selected for these experi-
ments is Ko = 100 Nmrad—! and is equal to the K¢,y used
in the previous experiment. This simulation is subdivided as
follows:

1) Effect of the change from welded to contact connection

changes the system evolution.

2) Interaction with different values of environmental
stiffness. The (Keny) evaluated are 50 Nmrad~!' and
500 Nmrad~!.

3) Performance changes introduced by different (Depy)
values. The selected values are 0 and 63.2 Nmsrad !,
which is the critical damping for a system with / =10
kgms? and Kep, = 100 Nmrad—!.

During the first simulation, the inertial component starts in
contact with the hard-stop, while it starts at 0.5 rad away for
the other two simulations. T, for the last two experiments
have been chosen to be 5N, which is in the linear stiffness
region (¥ < Xp) for the selected parameters.

IV. RESULTS

The results for the Normalised Mean Square Error of the
torque tracking error (T) for the simulations are reported

in Fig. 6 and Fig. 7. The MSEs for the welded connection
are always contained below 10~! of the desired torque even
when considering the transient period, and they drop below
10~ in the last 5s of the simulated trajectories. However,
the introduction of the contact connection shows an increase
in 7 to about 10~ of the desired torque even at the regime.
This indicates that a unilateral connection to an external
system is already a source of uncertainty that degrades the
performance. The data reported in Fig. 7 further indicate that
the errors increase even more when introducing the impact
with the external environment, wherein some cases they can
even reach two times the desired torque.

The time trajectories of the force and position tracking
show a transient of about 0.5s in the case of welded contact
(Fig 7), which increases to about 1s when introducing the
contact dynamics (Fig 8). The time data analysis for the
other experiments shows that despite the high impulsive
force generated at the impact, the controller can retain
contact in all the simulations, reported in Fig. 9 and Fig. 10.
Furthermore, the data show that the torque error is always
negative (T<Ty). T is still reducing but at an extremely slow
rate indicating that may be related to the choice of o in
Algorithm 2.

V. DISCUSSION

The results indicate that the proposed method can safely
interact with external dynamics, and it can deal with the
impulsive perturbation received when making contact. The
controller passivity also enables to modify the controller
parameters online without concerns for its stability.

The data also show that some trade-off needs to be made
for obtaining robustness of interaction, particularly when
tracking the desired forces. However, other methods are
not exempt from similar trade-offs on the torque tracking
accuracy when increasing interaction robustness. Differently
from these methods, the proposed controller stability is
not associated with the external environment but it is an
intrinsic property of the controller. Therefore, it requires
fewer assumptions on the environmental dynamics, and if
they are violated it degrades the system accuracy but it
does not lead to a catastrophic failure of the controller. This
inherently safe behaviour is one of the key advantages of
our proposed method for the control of real-world robotic
systems interacting safely with people and environments.

The integration of Algorithms 1 and 2 into the architecture
presented in Fig. 1 has shown that it is possible to reproduce
behaviours similar to the one generated by agonist and
antagonist muscles in biological systems. This architecture
enables the online adaptation of the impedance behaviour
without affecting the system stability, which is similar to
what has been observed in human by previous studies [9],
[11], [20], [21]. The ability to retain the stability during a
wide range of unknown dynamic conditions is desirable for
applications such as human-robot interaction (e.g., haptics,
rehabilitation robots, and prosthetics), control of cable-driven
systems where it may difficult to accurately model the
transmission dynamics, and soft robotics. This framework
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Fig. 5. On the left column, there are the normalised Mean Square Error (MSE) during the welded interaction with a spring-damper mechanism. The data
show that the error is always negligible regardless of the selected Kj. On the right, the normalised MSE for the contact interaction using the same Kepy
and Depy of the welded interaction show an increase of the error that is probably related to the introduction of the contact dynamics. The 1% Error is
evaluated setting the X; = 0.001 rad. Lastly, it shall be noted that the normalisation for Tq =20 N has been performed using Fy,x = 15 N.
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most cases the normalised MSE does not reach acceptable levels even when considering only the final 5s of the trajectory, indicating that the controller
parameters should be tuned to accurately track forces in different environments.

may also find application in modelling human motor control,
where the possibility of superimposing multiple controllers
may provide a platform to better understand motor synergies.

In conclusion, the proposed method has been proven
feasible, and it shows a good level of performance when
it is applied on a bilateral (welded) connection to the
environment. The introduction of unilateral contact dynamics

increases the force tracking error, however, it does not
interfere with the ability of the controller to retain contact
and stability of interaction. The residual tracking error seems
to be related to the choice of the ¢ parameter in Algorithm
2, which should be exposed and optimised by interaction.
However, the data also show that this problem can be
solved simply by setting Fyax = Ty. This also enables a
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Fig. 8. The introduction of the contact dynamics renders the torque
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higher convergence speed to the desired torque. The passivity
of the controller further implies that multiple controllers
can be superimposed without interfering with the system
stability. This provides a framework to develop a hierarchical
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Fig. 9. After making contact the system never breaks it indicating the
robustness of the controller which can deal with the impact dynamics
without any significant issues. The residual error shows that the applied
torque is less than the desired. A decreasing trend is still present in all case
but with an extremely low rate of convergence.
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Fig. 10. The interaction with an undamped environment shows similar
post-contact behaviour of the damped interactions in Fig. 9. However, the
removal of the damping introduces an initial oscillatory behaviour that
replaces the torque spike present when making contacts in Fig. 9.

architecture of semi-autonomous controllers that can be used
to study human motor control and improve robots dynamic



interaction performances—a focus of our future work.

APPENDIX
A. Lyapunov’s Stability Analysis

The fractal impedance has a non-smooth piece-wise en-
ergy manifold with a time-invariant topology that scales
with the controller gains by it does not change shape [15].
Let’s now consider the controller autonomous dynamics for

a monodimensional system generated via Algorithm 1:
A+ Fg (%) =0 3)
Ai+Fap(%) =0

where A is the inertia of the system. A valid Lyapunov’s
candidate is:

Vk = (iT AX) /2 + Ex (%)
Vaa = (XTAX)/Z +EAA(f) + Ec

where Ec is a constant of energy offset introduced in the
switching conditions. Thus, V time derivative is:

Vk = (AX+FK(X))x=0
Vaa = (A + Fpa (%)% =0

“4)

&)

Therefore, the conditions for stability are respected in both
the branches of the system. Nevertheless, being the system
non-smooth to prove stability is needed to verify if V is
a Lipschitz function during the switching conditions. Being
V =0 at the switching conditions due to % = 0.
lim Vg = EK(JEMax)

X—XMax
x—=0
lim Vaa = Eaa(¥max) + Ec
X—XMax
x—=0
lim VK = EK(O) =0
=0
x—=0
B lim Vaa = EAA(O) + Ec
=0

x—0

(6)

The continuity condition can be derived using the following
system of equations:

Ec = Ex(¥Max) — EAA (XMax) 7
being:

Exa(0) = /

ch/z

0 iMax/z
Faa(X)dx = —/ Faa(%)dx
0

= —(EK (JZMax) _AEA|)?M,”)/2

Ean (X’Max) = (EK ()ZMax) +AEA|XM¢1X)/2
and given that the energy contribution of antagonist muscle
(AEs,,,.) always opposes to the motion:

Ec = —Eaa(0) = (Ex(¥Max) — AEAgy,,.) /2

which implies:

(®)

Vaa(0) =0
Vaa (EMax) = Ex (¥Max)
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