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Abstract— We introduce Crocoddyl (Contact RObot COntrol
by Differential DYnamic Library), an open-source framework
tailored for efficient multi-contact optimal control. Crocoddyl
efficiently computes the state trajectory and the control policy
for a given predefined sequence of contacts. Its efficiency is due
to the use of sparse analytical derivatives, exploitation of the
problem structure, and data sharing. It employs differential
geometry to properly describe the state of any geometrical
system, e.g. floating-base systems. Additionally, we propose
a novel optimal control algorithm called Feasibility-driven
Differential Dynamic Programming (FDDP). Our method does
not add extra decision variables which often increases the
computation time per iteration due to factorization. FDDP
shows a greater globalization strategy compared to classical
Differential Dynamic Programming (DDP) algorithms. Con-
cretely, we propose two modifications to the classical DDP algo-
rithm. First, the backward pass accepts infeasible state-control
trajectories. Second, the rollout keeps the gaps open during
the early “exploratory” iterations (as expected in multiple-
shooting methods with only equality constraints). We showcase
the performance of our framework using different tasks. With
our method, we can compute highly-dynamic maneuvers (e.g.
jumping, front-flip) within few milliseconds.

I. INTRODUCTION

Multi-contact optimal control promises to generate whole-
body motions and control policies that allow legged robots to
robustly react to unexpected events in real-time. It has sev-
eral advantages compared with state-of-the-art frameworks
(e.g. [1], [2]) in which a whole-body controller (e.g. [3], [4],
[5]) compliantly tracks an optimized Centroidal dynamics
trajectory (e.g. [6], [7]) with optionally an optimized contact
plan (e.g. [8], [9], [10]). For instance, they cannot properly
handle the robot orientation, particularly during flight phases
due to the nonholonomic effect on the dynamics, and to reg-
ulate the angular momentum to zero leads to tracking errors
even in walking motions [11]. Furthermore, it is well-known
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Fig. 1. Crocoddyl: an efficient and versatile framework for multi-contact
optimal control [14]. Highly-dynamic maneuvers are needed to traverse an
obstacle with the ANYmal robot.

that instantaneous time-invariant control (i.e. instantaneous
whole-body control) cannot properly track nonholonomic
systems [12]. Indeed, in our previous work [13], we have
shown that whole-body planning produces more efficient
motions, with lower forces and impacts.

Recent work on optimal control has shown that nonlinear
Model Predictive Control (MPC) is plausible for controlling
legged robots in real-time [15], [16], [17]. All these methods
have in common that they solve the nonlinear Optimal
Control (OC) problem by iteratively building and solving
a Linear-Quadratic Regulator (LQR) problem (i.e. DDP
with Gauss-Newton approximation [18]). These frameworks
use numerical or automatic differentiation which is often
inefficient compared to sparse and analytical derivatives [19].
Furthermore, they do not explicitly handle the geometric
structure of legged systems which include elements of
SE(3). DDP has proven to efficiently solve nonlinear OC
problems due to its intrinsic sparse structure. However,
it has poor globalization strategy and struggles to handle
infeasible warm-start1. In this vein, Giftthaler et al. [20]
proposed a variant of the DDP algorithm for multiple-
shooting OC, which has a better convergence rate than DDP.
Nonetheless, the gap contraction rate does not numerically
match the Karush-Kuhn-Tucker (KKT) problem applied to
the multiple-shooting formulation with only equality con-

1An infeasible warm-start refers to state and control trajectories that are
not consistent with the system dynamics.
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straints [21]. In this work, we address these drawbacks by
computing highly-dynamic maneuvers as shown in Fig. 1.

A. Contribution

We propose a novel and efficient framework for multi-
contact OC called Crocoddyl. Our framework efficiently
solves this problem by employing sparse and analytical
derivatives of the contact and impulse dynamics. The OC
solver properly handles the geometry of rigid bodies us-
ing dedicated numerical routines for Lie groups and their
derivatives. Indeed, we model the floating-base as a SE(3)
element, needed for example for the generation of front-
flip motions. Additionally, we propose a variant of the DDP
algorithm that matches the behavior of the Newton method
applied to the KKT conditions of a direct multiple-shooting
formulation with only equality constraints. Our algorithm is
called Feasibility-driven Differential Dynamic Programming
(FDDP)2 as it handles infeasible guesses that occur whenever
there is a gap between subsequent nodes in the trajectory.
FDDP has a greater globalization strategy compared to
classical DDP, allowing us to solve complex maneuvers in
few iterations.

II. MULTI-CONTACT OPTIMAL CONTROL

In this section, we first introduce the multi-contact optimal
control problem for multibody systems under physical con-
straints (Section II-A). We simplify the problem by modeling
contacts as holonomic constraints (Section II-B). With this
method, we derive tailored analytical and sparse derivatives
for fast computation. The calculation of derivatives typically
represents the main computation carried out by optimal
control solvers.

A. Formulation of the optimal control problem

We focus on an efficient formulation of the multi-contact
optimal control problem. One can formulate this problem as
follows:{

x∗0, · · · ,x∗N
u∗0, · · · ,u∗N−1

}
= arg min

X,U
lN (xN ) +

N−1∑
k=0

∫ tk+∆tk

tk

l(x,u)dt

s.t. v̇,λ = arg min
v̇,λ
‖v̇ − v̇free‖M,

x ∈ X ,u ∈ U
(1)

where the state x = (q,v) ∈ X lies on a differential
manifold formed by the configuration point q and its tan-
gent vector v and is described by a nx-tuple, the control
u = (τ ,λ) ∈ Rnu composed by input torque commands
τ and contact forces λ, ẋ ∈ TxX lies in the tangent
space of the state manifold and it is described by a ndx-
tuple, and X , U represent the state and control admissible
sets, respectively, v̇free is the unconstrained acceleration in
generalized coordinates, and M is the joint-space inertia
matrix.

This problem can be seen as a bilevel optimization, where
the lower-level optimization uses the Gauss principle of least

2We also refer as feasibility-prone DDP.

constraint to describe the physical constraints as described
in [22]. State and control admissible sets can belong to the
lower-level optimization (e.g., joint limits and force friction
constraints) as well as to the upper-level one (e.g., task-
related constraints and collision with the environment).

B. Contacts as holonomic constraints

To solve this optimization problem in real-time, we need to
efficiently handle (a) the high-dimensionality of the search-
space and (b) the instabilities, discontinuities, and non-
convexity of the system dynamics (lower-level optimization),
among others. One way of reducing the complexity of
the OC problem is by solving the lower-level optimization
analytically, e.g. [13]. Indeed, we have implemented the
contact model using holonomic scleronomic constraints on
the frame placement (i.e. φ(q) = 0 where Jc = ∂φ

∂q is the
contact Jacobian) as:[

v̇
−λ

]
=

[
M J>c
Jc 0

]−1 [
τ b
−a0

]
=

[
y(x, τ )
−g(x, τ )

]
, (2)

where Jc is expressed in the local frame, and a0 ∈ Rnf

is the desired acceleration in the constraint space. Eq. (2)
allows us to express the contact forces in terms of the state
and torques, and it has a unique solution if Jc is full-rank. To
improve stability in the numerical integration, we define PD
gains that are similar in spirit to Baumgarte stabilization [23]:

a0 = aλ(c) − α oMref
λ(c) 	

oMλ(c) − βvλ(c), (3)

where vλ(c), aλ(c) are the spatial velocity and acceleration at
the parent body of the contact λ(c), respectively, α and β are
the stabilization gains, and oMref

λ(c) 	
oMλ(c) is the SE(3)

inverse composition between the reference contact placement
and the current one [24].

As Eq. (2) neglects the friction-cone constraints and the
joint limits, the dynamics describe an equality constraint and
we can use an unconstrained DDP solver [25]. Nonetheless,
inequality constraints can still be included in DDP-like
solvers, i.e. using penalization, active-set [26], or Augmented
Lagrangian [27] strategy.

1) Efficient rollout and derivative computation: We do not
need to invert the entire KKT matrix in Eq. (2) during the
numerical integration of the dynamics. Indeed, the evolution
of the system acceleration and contact can be described as:

y(x, τ ) = M−1
(
τ b + J>c g(x, τ )

)
,

g(x, τ ) = M̂−1(a0 − JcM
−1τ b), (4)

and, for instance, we can use the Cholesky decomposition for
efficiently computing M−1 and M̂−1 = JcM

−1J>c . Note
that M̂ is the operational space inertia matrix [28].

If we analytically derive Eq. (2) by applying the chain
rule, then we can describe the Jacobians of y(·) and g(·)
with respect to the derivatives of the Recursive Newton-Euler



Algorithm (RNEA) algorithm and kinematics, i.e.:[
δv̇
−δλ

]
= −

[
M J>c
Jc 0

]−1([ ∂τ
∂x
∂a0

∂x

]
δx +

[
∂τ
∂u
∂a0

∂u

]
δu

)
=

[
yx

−gx

]
δx +

[
yu

−gu

]
δu, (5)

where ∂τ
∂x , ∂τ

∂u are the RNEA derivatives, and ∂a0

∂x , ∂a0

∂u are
the kinematics derivatives of the frame acceleration [19],
[29]. We use a LDU decomposition to invert the blockwise
matrix3 in Eq. (5).

2) Impulse dynamics: We can similarly describe the im-
pulse dynamics of a multibody system4 as:[

M J>c
Jc 0

] [
v+

−Λ

]
=

[
Mv−

−eJcv−
]
, (6)

where e ∈ [0, 1] is the restitution coefficient that considers
compression / expansion, Λ is the contact impulse and, v−

and v+ are the discontinuous changes in the generalized
velocity (i.e., velocity before and after impact, respectively).
Perfect inelastic collision produces a contact velocity equal
to zero, i.e., e = 0. Similarly, we use the Cholesky decom-
position to efficiently compute the impulse dynamics and its
derivatives.

III. FEASIBILITY-PRONE DIFFERENTIAL DYNAMIC
PROGRAMMING

In this section, we describe our novel solver for multiple-
shooting OC called Feasibility-driven Differential Dynamic
Programming (FDDP). First, we briefly describe the DDP
algorithm (Section III-A). Then, we analyze the numerical
behavior of classical multiple-shooting methods (Section III-
B). With this in mind, we propose a modification of the
forward and the backward passes in Section III-C and III-
D, respectively. Finally, we propose a new model for the
expected reduction cost and line-search procedure based on
the Goldstein condition (Section III-E).

A. Differential dynamic programming

DDP belongs to the family of OC and indirect trajectory
optimization methods [25]. It locally approximates the op-
timal flow (i.e., the Value function) around (δxk, δuk) as

Vk(δxk) = min
δuk

lk(δxk, δuk) + Vk+1(fk(δxk, δuk)), (7)

which breaks the OC problem into a sequence of simpler
subproblems by using “Bellman’s principle of optimality”,
i.e.:

δu∗k(δxk) = (8)

arg min
δuk

H(δxk,δuk,V̄k,k)︷ ︸︸ ︷
1

2

 1
δxk
δuk

T  0 QT
xk

QT
uk

Qxk
Qxxk

Qxuk

Quk
QT

xuk
Quuk

 1
δxk
δuk

 .
3Note that this is the KKT matrix.
4Transitions from non-contact to contact condition [30].

Note that lk(·), fk(·) are the Linear Quadratic (LQ) approxi-
mation of the cost and dynamics functions, respectively; δxk,
δuk reflects the fact that we linearize the problem around
a guess (xik,u

i
k). This remark is particularly important (1)

to understand our FDDP algorithm and (2) to deal with
the geometric structure of dynamical systems5 (e.g. using
symplectic integrators [31]).

The Q∗∗ terms represent the LQ approximation of the con-
trol Hamiltonian function H(·). The solution of the entire OC
problem is computed through the Riccati recursion formed
by sequentially solving Eq. (8). This procedure provides
the feed-forward term kk and feedback gains Kk at each
discretization point k.

B. The role of gaps in multiple-shooting
The multiple-shooting OC formulation introduces interme-

diate states xk (i.e., shooting nodes) as additional decision
variables to the numerical optimization problem with extra
equality constraints that attend to close the gaps6 [21], i.e.

f̄k+1 = f(xk,uk)− xk+1, (9)

where f̄k+1 represents the gap in the dynamics, f(xk,uk)
is the rollout state at interval k + 1, and xk+1 is the next
shooting state (decision variable). For the remainder of this
paper, we assume that there is a shooting node for each
integration step along the trajectory.

By approaching the direct multiple-shooting formulation
as a Sequential Quadratic Programming (SQP) problem, one
can describe a single Quadratic Programming (QP) iteration
as

min
δX,δU

lN (δxk) +

N−1∑
k=0

lk(δxk, δuk)

s.t. δx0 = x̃0,

δxk+1 = fxkδxk + fukδuk + f̄k+1,

(10)

where the SQP sequentially builds and solves a single
QP problem until it reaches the convergence criteria. The
solution of Eq. (10) provides us a search direction. Then,
we can find a step length α for updating the next guess
(Xi+1,Ui+1) as[

Xi+1

Ui+1

]
=

[
Xi

Ui

]
+ α

[
δXi

δUi

]
(11)

where the new guess trajectory (Xi+1,Ui+1) does not
necessarily close the gaps as we explain below.

1) KKT problem of the multiple-shooting formulation: To
understand the behavior of the gaps, we formulate the KKT
problem in Eq. (11) for a single shooting interval k as:

Hk︷ ︸︸ ︷[
lxxk

lxuk

lTxuk
luuk

] δwk︷ ︸︸ ︷[
δxk
δuk

]
+

[∇g−
k ∇g+

k ]︷ ︸︸ ︷[
I −fTxk

−fTuk

] [
λk

λk+1

]
= −

∇Φk︷ ︸︸ ︷[
lxk

luk

]
, (12)[

I
−fxk

−fuk

] [
δxk
δuk

]
=

[
f̄k

f̄k+1

]
, (13)

5The configuration point lies on a manifold Q (e.g., a Lie group) and the
system derivatives lies in its tangent space.

6It is also called defects in multiple-shooting literature.



where Eq. (12), (13) are the dual and primal feasibility of
the First-order Necessary Condition (FONC) of optimality,
respectively. The Jacobians and Hessians of the cost function
(LQ approximation) are lx, lu, and lxx, lxu, luu, respec-
tively. The Lagrangian multipliers of the KKT problem are
(λk,λk+1).

We obtain the search direction δwk by solving the FONC
as follows: δwk

δλk
δλk+1

 =

 Hk ∇g−k ∇g+
k

∇g−
T

k

∇g+T

k


−1 ∇Φk

f̄k
f̄k+1

 , (14)

in which we note that a α-step closes the gap at k by a
factor of (1−α)f̄k, while only a full-step (α = 1) can close
the gap completely. Below, we explain how to ensure this
multiple-shooting behavior in the forward-pass.

C. Nonlinear rollout avoids merit function

SQP often requires a merit function to compensate the
errors that arise from the local approximation of the clas-
sical line-search. Defining a suitable merit function is often
challenging, which is why we do not follow this approach.
Instead, we avoid (a) the linear-prediction error of the
dynamics – i.e. search direction defined by Eq. (14) – with a
nonlinear rollout and (b) the requirement of a merit function.

For a nonlinear rollout, the prediction of the gaps after
applying an α-step is:

f̄ i+1
k+1 = f̄ ik+1 − α(δxk+1 − fxkδxk − fukδuk)

= (1− α)(f(xk,uk)− xk+1), (15)

and we maintain the same gap contraction rate of the search
direction Eq. (14). Therefore, we have the following rollout:

x̂0 = x̃0 − (1− α)f̄0,

ûk = uk + αkk + Kk(x̂k − xk), (16)
x̂k+1 = fk(x̂k, ûk)− (1− α)f̄k+1,

where kk and Kk are the feed-forward term and feedback
gains computed during the backward pass, respectively. Note
that the forward pass of the classical DDP always closes
the gaps, and with α = 1, the FDDP forward pass behaves
exactly as the classical DDP one.

D. Backward pass under an infeasible guess trajectory

Gaps in the dynamics and infeasible warm-starts generate
derivatives at different points. The Riccati recursion updates
the Value and Hamiltonian functions based on these deriva-
tives. The classical DDP algorithm overcomes this problem
by first performing an initial forward pass. However, from a
theoretical point, it corresponds to only being able to warm-
start the solver with the control trajectory U0, which is not
convenient in practice7.

We adapt the backward pass to accept infeasible guesses
as proposed by [20]. It assumes a LQ approximation of the

7It is straight-forward to obtain a state trajectory X0 that provides an
initial guess for the OC solver, however, establishing a corresponding control
trajectory U0 beyond quasi-static maneuvers is a limiting factor.

Value function, i.e. the Hessian is constant and the Jacobian
varies linearly. We use this fact to map the Jacobians and
Hessian of the Value function from the next shooting-node
to the current one. Therefore, the Riccati recursions are
modified as follows:

Qxk
= lxk

+ fTxk
V +

xk+1
,

Quk
= luk

+ fTuk
V +

xk+1
,

Qxxk
= lxxk

+ fTxk
Vxxk+1

fxk
, (17)

Qxuk
= lxuk

+ fTxk
Vxxk+1

fuk
,

Quuk
= luuk

+ fTuk
Vxxk+1

fuk
.

where V +
xk+1

= Vxk+1
+ Vxxk+1

f̄k+1 is the Jacobian of the
Value function after the deflection produced by the gap f̄k+1,
and the Hessian of the Value function remains unchanged.

E. Accepting a step

The expectation of the total cost reduction proposed
by [32] does not consider the deflection introduced by the
gaps. This is a critical point to evaluate the success of a trial
step during the numerical optimization. From our line-search
procedure, we know that the expected reduction on the cost
has the form:

∆J(α) = ∆1α+
1

2
∆2α

2, (18)

where, by closing the gaps as predicted in Eq. (14) in the
linear rollout, we obtain:

∆1 =

N−1∑
k=0

k>k Quk
+ f̄>k (Vxk

− Vxxk
xk),

∆2 =

N−1∑
k=0

k>k Quuk
kk + f̄>k (2Vxxk

xk − Vxxk
f̄k). (19)

Note that if all gaps are closed, then this expectation model
matches the one reported in [32].

We use the Goldstein condition to check for the trial step,
instead of the Armijo condition typically used in classical
DDP algorithms, e.g., [32]. The reason is due to the fact
that ∆J might be an ascent direction, for instance, during
the infeasible iterations. Therefore, FDDP accepts the step if
the cost reduction is:

l′ − l ≤

{
b1∆J(α) if ∆J(α) ≤ 0

b2∆J(α) otherwise
(20)

where b1, b2 are adjustable parameters, we used in this paper
b1 = 0.1 and b2 = 2. This critical mathematical aspect has
not been considered in [20].

IV. RESULTS

In this section, we show the capabilities of our multi-
contact optimal control framework. We first compute various
legged gaits for both quadruped and biped robots (Section IV-
A). As our formulation is simple and does not depend on a
good initial guess, it can be used easily with different legged
robots. Next, we analyze the performance of the FDDP with
the generation of highly-dynamic maneuvers such as jumps



and front-flips. These motions are computed within a few
iterations and milliseconds as reported. We have deliberately
ignored friction-cone constraints and torque limits for the
sake of evaluating the FDDP, however, it is possible to
include those inequality constraints through quadratic penal-
ization as shown in the cover clip of accompanying video.
The accompanying video8 highlights all different motions
reported in this section.

A. Various legged gaits

We computed different gaits — walking, trotting, pacing,
and bounding — with our FDDP algorithm in the order of
milliseconds. All these gaits are a direct outcome of our
algorithm given a predefined sequence of contacts and step
timings. These motions are computed in around 12 iterations.
We used the same weight values and cost functions for all the
quadrupedal gaits, and similar weight values for the bipedal
walking.

The cost function is composed of the Center of Mass
(CoM) and the foot placement tracking costs together with
regularization terms for the state and control. We used
piecewise-linear functions to describe the reference trajec-
tory for the swing foot. Additionally, we strongly penalize
footstep deviation from the reference placement. We warm-
start our solver using a linear interpolation between the nom-
inal body postures of a sequence of contact configurations.
This provides us a set of body postures together with the
nominal joint postures as state warm-start X0. Then, the
control warm-start U0 is obtained by applying the quasi-
static assumption9 along X0.

In each switching phase10, we use the impulse dynamics to
ensure the contact velocity equals zero, see Eq. (6). We ob-
served that the use of impulse models improves the algorithm
convergence compared to penalizing the contact velocity. We
used a weighted least-squares function to regularize the state
with respect to the nominal robot posture, and quadratic
functions for the tracking costs and control regularization.

B. Highly-dynamic maneuvers

Our FDDP algorithm is able to compute highly-dynamic
maneuvers such as front-flip and jumping in the order of
milliseconds (Fig. 3). These motions are often computed
in between 12–36 iterations with a naı̈ve and infeasible
X0,U0 warm-start. We used the same initialization, weight
values and cost functions reported in Section IV-A, with
a slightly incremented weight for the state regularization
during the impact phases (i.e. wxReg = 10). Additionally,
and for simplicity, we included a cost that penalizes the
body orientation in the ICub jumps. Similarly to other cost
functions, we used a quadratic penalization with a weight
value of 104. Note that a more elaborate cost function could
be incorporated: arm motions, angular momentum regulation,
etc.

8https://youtu.be/wHy8YAHwj-M.
9The quasi-static torques are numerically computed through Newton steps

using the reference posture as an equilibrium point.
10In this work, with “switching phases” we refer to contact gain.
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Fig. 2. Gaps contraction, step length, and convergence rates for different
motions. (top) Gaps are closed in the first iteration for simpler motions such
as biped walking and quadrupedal gaits. Instead, the FDDP solver chooses
to keep the gaps open for the early iterations for highly-dynamic maneuvers.
Note that we use the L2-norm of the total gaps, i.e., gaps for all the nodes
of the trajectory. (bottom) The required iterations increases mainly with the
dynamics of the gait and numbers of nodes. For instance, we can see lower
rate of improvement in the first nine iterations in the ANYmal (jump-4f)
and ICub jumps (jump-2f). In case of the quadrupedal walking, we have
very short durations in the four-feet support phases, making it a dynamic
walk.

The advantage of our FDDP algorithm is clearly evident in
the generation of highly-dynamic maneuvers, where feasible
rollouts might produce trajectories that are unstable and far
from the solution. The classical DDP has a poor globalization
strategy that comes from inappropriate feasible rollouts in the
first iterations; it struggles to solve these kind of problems.

C. Runtime, contraction, and convergence

We analyzed the gaps contraction and convergence rates
for all the presented motions. To easily compare the results,
we normalize the gaps and cost values per each iteration
as shown in Fig. 2. We use the L2-norm of the total gaps
and plot the applied step-length for the jumping motions
(ajump-4f and ajump-2f). These results show that keeping
the gaps open is particularly important for highly-dynamic
maneuvers such as jumping. Indeed, in the jumping motions,
FDDP keeps the gaps open for few iterations. Additionally,
we often observed in practice super-linear convergence of
the FDDP algorithm after closing the gaps. This is expected
since the FDDP forward-pass behaves as the DDP forward
pass when the gaps are closed, which is defined by the
search direction of a multiple-shooting formulation with only
equality constraints (Section III-B.1).

Highly-dynamic maneuvers have a lower rate of improve-
ment in the first iterations, cf. Fig. 2 (bottom). The same
occurs in the quadrupedal walking case (walk-4f), in which
the four-feet support phases have a very short duration
(∆t = 2 ms). Our FDDP algorithm, together with the
impact models, shows competitive convergence rates when
compared to the reported results in [33], [34], respectively.

The motions converge within 10 to 34 iterations, with an
overall computation time of less than 0.5 s. The numerical

https://youtu.be/wHy8YAHwj-M


Fig. 3. Snapshots of generated highly-dynamic maneuvers in legged robots using the feasibility-prone differential dynamic algorithm. (top) jumping
obstacles in a humanoid robot; (middle) front-flip maneuver in a biped robot; (bottom) jumping obstacles in a quadruped robot.

integration step size is often δt = 1 × 10−2 s, with the
exception of the biped walking δt = 3 × 10−2 s, and the
number of nodes are typically between 60 to 115. Therefore,
the optimized trajectories have a horizon of between 0.6 s to
3 s.

We also benchmark the computation time for a single
iteration using our solver. The number of contacts does not
affect the computation time; it scales linearly with respect
to the number of nodes. With multi-threading, our efficient
implementation of contact dynamics achieves computation
rates up to 859.6 Hz (jump-4f on i9-9900K, 60 nodes).
We parallelize only the computation of the derivatives, and
roughly speaking, we reduce the computation time in half
using four to eight threads (cf. Fig. 4). To understand the
performance of Crocoddyl, we have run 50000 trials, for
each of the benchmark motions, on four different Intel PCs
with varying levels of parallelization11. We used the optimal
number of threads for each PC as identified in Fig. 4. The
computation frequency per one iteration is reported in Fig. 5.
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Fig. 4. Computation time per iteration for different CPUs and level of
parallelism. Note that the use of hyper-threading decreases the computation
frequency for all tested CPUs.

11PC1: i7-6700K @ 4.00GHz × 8 with 32 GB 2133MHz RAM,
PC2: i7-7700K @ 4.20GHz × 8 with 16 GB 2666MHz RAM, PC3:
i9-9900K @ 3.60GHz × 16 with 64 GB 3000MHz RAM, and PC4: i7-
9900XE @ 3.00GHz× 36 with 128 GB 2666MHz RAM.
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Fig. 5. Computation frequency per iteration for different motions for
different PCs. PC1 has specifications typical for on-board computers found
on robots, while PC3 uses high-performance CPU and RAM. The reported
values use the optimal number of threads as identified in Fig. 4.

V. CONCLUSION

We presented a novel and efficient framework for multi-
contact optimal control. The gap contraction of FDDP is
equivalent to direct multiple-shooting formulations with only
equality constraints (i.e. the Newton method applied to
the KKT conditions). However, and in contrast to classi-
cal multiple-shooting, FDDP does not add extra decision
variables which often increases the computation time per
iteration due to factorization; it has cubic complexity in ma-
trix dimension. FDDP also improves the poor globalization
strategy of classical DDP methods. This allows us to solve
highly-dynamic maneuvers such as jumping and front-flip in
the order of milliseconds. Thanks to our efficient method for
computing the contact dynamics and their derivatives, we
can solve the optimal control problem at high frequencies.
Finally, we demonstrated the benefits of using impact models
for contact gain phases. Our core idea about feasibility could
incorporate inequality constraints in the form of penalization
terms. Future work will focus on feasibility under inequality
constraints such as torque limits, and friction cone. Those in-
equalities constraints can be handled using interior-point [26]
or Augmented Lagrangian [27] methods.

https://youtu.be/wHy8YAHwj-M?t=74
https://youtu.be/wHy8YAHwj-M?t=26
https://youtu.be/wHy8YAHwj-M?t=46
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