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Abstract Central Pattern Generators (CPGs) have several properties
desirable for locomotion: they generate smooth trajectories, are robust
to perturbations and are simple to implement. However, they are notori-
ously difficult to tune and commonly operate in an open-loop manner.
This paper proposes a new methodology that allows tuning CPG con-
trollers through gradient-based optimisation in a Reinforcement Learning
(RL) setting. In particular, we show how CPGs can directly be integrated
as the Actor in an Actor-Critic formulation. Additionally, we demon-
strate how this change permits us to integrate highly non-linear feedback
directly from sensory perception to reshape the oscillators’ dynamics.
Our results on a locomotion task using a single-leg hopper demonstrate
that explicitly using the CPG as the Actor rather than as part of the en-
vironment results in a significant increase in the reward gained over time
(20x more) compared with previous approaches. Finally, we demonstrate
how our closed-loop CPG progressively improves the hopping behaviour
for longer training epochs relying only on basic reward functions.

Keywords: Central Pattern Generators, Reinforcement Learning, Feedback Con-
trol, Legged Robots

1 Introduction

The increased manoeuvrability associated with legged robots in comparison
to wheeled or crawling robots necessitates complex planning and control solu-
tions. The current state-of-the-art for high-performance locomotion are modular,
model-based controllers which break down the control problem in different sub-
modules [1].This rigorous approach is rooted in the knowledge of every portion
of the motion, but it is also limited by heuristics handcrafted by engineers at
each of the stages.

While the field of legged robot control has been dominated over the last dec-
ades by conventional control approaches, recently, data-driven methods demon-
strated unprecedented results that outpaced most of the classical approaches
in terms of robustness and dynamic behaviours [2|. In particular, controllers
trained using deep-RL utilise a Neural Network (NN) policy to map sensory in-
formation to low-level actuation commands. As a result, controllers trained with
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Figure 1: The experiments are carried out on a classic Reinforcement Learn-
ing (RL) benchmark — the single-leg hopper based on the ANYmal quadruped
robot [3]. It hops along the vertical axis and is controlled by Central Pattern
Generators (CPGs). Closed-loop feedback is incorporated using a jointly trained
Multilayer Perceptron (MLP) network (Fig. [La). To demonstrate that the CPG-
Actor progressively learns to jump higher peaks of both the hip (solid line) and
foot (dotted line) heights (Fig. are shown.

RL exhibit behaviours that cannot be hand-crafted by engineers and are further
robust to events encountered during the interaction with the environment. How-
ever, widely-used NN architectures, such as MLP, do not naturally produce the
oscillatory behaviour exhibited in natural locomotion gaits and as such require
long training procedures to learn to perform smooth oscillations.

A third family of controllers have been used with promising results for ro-
bot locomotion: CPGs, a biologically-inspired neural network able to produce
rhythmic patterns. However, very few design principles are available, especially
for the integration of sensor feedback in such systems [|4] and, although con-
ceptually promising, we argue that the full potential of CPGs has so far been
limited by insufficient sensory-feedback integration.

The ability of Deep-NNs to discover and model highly non-linear relation-
ships among the observation — the inputs — and control signals — the outputs
— makes such approaches appealing for control. In particular, based on Deep-
NNs, Deep-RL demonstrated very convincing results in solving complex loco-
motion tasks |25 and it does not require direct supervision (but rather learns
through interaction with the task). Hence, we argue that combining Deep-RL
with CPGs could improve the latter’s comprehension of the surrounding envir-
onment. However, optimising Deep-NN architectures in conjunction with CPGs
requires adequate methods capable of propagating the gradient from the loss to
the parameters, also known as backpropagation.

To address this, this paper introduces a novel way of using Deep-NNs to incor-
porate feedback into a fully differentiable CPG formulation, and apply Deep-RL
to jointly learn the CPG parameters and MLP feedback.
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Figure 2: @ represents the basic actor-critic Deep-RL method adopted for con-
tinuous action space control. (]ED illustrates the approach proposed in [10H13],
which consists in a classic actor-critic with CPGs embedded in the environment.
(c), instead, is the approach proposed in the present work, which includes the
CPGs alongside the MLP network in the actor critic architecture.

1.1 Related Work

Our work is related to both the fields of CPG design and RL, in particular to
the application of the latter for the optimisation of the former’s parameters.

CPGs are very versatile and have been used for different applications includ-
ing non-contact tasks such as swimmers [6], modular robots |7] and locomotion
on small quadrupeds [8|. The trajectories CPGs hereby generate are used as
references for each of the actuators during locomotion and a tuning procedure
is required to reach coordination. The optimisation of CPG-based controllers
usually occurs in simulation through Genetic Algorithms (GA), Particle Swarm
Optimisation (PSO) or expert hand-tuning [6,8].

To navigate on rough terrain sensory feedback is crucial (e.g. in order to
handle early or late contact), as shown in [9]: here, a hierarchical controller
has been designed, where CPGs relied on a state machine which controlled the
activation of the feedback.

Similarly to [9], [8] also uses feedback, this time based on gyroscope velocities
and optical flow from a camera to modify the CPGs output in order to maintain
balance. However, in [§] the authors first tune CPGs in an open-loop setting and
then train a NN with PSO to provide feedback (at this stage the parameters of
the CPGs are kept fixed). We follow the same design philosophy in the sense
that we preprocess the sensory feedback through a NN; yet, we propose to tune
its parameters in conjunction with the CPG.

Actor-critic methods [14] rely on an explicit representation of the policy
independent from the value function Fig.

Researchers applied RL to optimise CPGs in different scenarios [10]. The
common factor among them is the formulation of the actor-critic method; yet,
they include the CPG controller in the environment — as depicted in Fig. 2B In
other words, the CPG is part of the (black-box) environment dynamics. Accord-
ing to the authors [13], the motivations for including CPGs in the environment
are their intrinsic recurrent nature and the amount of time necessary to train
them, since CPGs have been considered Recurrent Neural Networks (RNNs)
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(which are computationally expensive and slow to train). In [10] during train-
ing and inference, the policy outputs a new set of parameters for the CPGs in
response to observations from the environment at every time-step. Conversely,
in [13] the parameters are fixed and, similarly to 8], CPGs receive inputs from
the policy. However, whether the CPGs parameters were new or fixed every time-
step, they all considered CPGs as part of the environment rather than making
use of their recurrent nature as stateful networks. We exploit this observation in
this paper.

1.2 Contributions

In this work, we combine the benefits of CPGs and RL and present a new meth-
odology for designing CPG-based controllers. In particular, and in contrast to
prior work, we embed the CPG directly as the actor of an Actor-Critic framework
instead of it being part of the environment. The advantage of directly embedding
a dynamical system is to directly encode knowledge about the characteristics of
the task (e.g., periodicity) without resorting to recurrent approaches. The out-
come is CPG-ACTOR, a new architecture that allows end-to-end training of
coupled CPGs and a MLP for sensory feedback by means of Deep-RL. In par-
ticular, our contributions are:

1. For the first time — to the best of our knowledge — the parameters of the CPGs
can be directly trained through state-of-the-art gradient-based optimisation
techniques such as Proximal Policy Optimisation (PPO) [15], a powerful RL
algorithm). To make this possible, we propose a fully differentiable CPG
formulation (Sec. along with a novel way for capturing the state of the
CPG without unrolling its recurrent state (Sec. [2.1).

2. Exploiting the fully differentiable approach further enables us to incorporate
and jointly tune a MLP network in charge of processing feedback in the same
pipeline.

3. We demonstrate a roughly twenty times better training performance com-
pared with previous state-of-the-art approaches (Sec. .

2 Methodology

As underlying oscillatory equation for our CPG network, we choose to utilise
the Hopf oscillator [16] in a tensorial formulation, eq. .

Differently to previous approaches presented in Sec. [[.I} we embed CPGs
directly as part of the actor in an actor-critic framework as shown in Fig.
Indeed, the policy NN has been replaced by a combination of an MLP network
for sensory pre-processing and CPGs for action computation, while the value
function is still approximated by an MLP network.

In practice, in our approach the outputs of the actor are the position com-
mands for the motors. In [10], instead, the actor (MLP-network) outputs the
parameters of the CPGs, that are then used by the environment (that includes
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the CPGs) to compute the motor commands. In this sense, there is a substan-
tial difference in the architectures: in CPG-ACTOR, both the CPGs’ and MLP’s
parameters are trained, while in |[10] only the MLP’s parameters are trained and
the CPGs’ ones are derived at runtime, being the output of the network.

However, a naive integration of CPGs into the Actor-Critic formulation is
error-prone and special care needs to be taken i) to attain differentiability
through the CPG actor in order to exploit gradient-based optimisation tech-
niques; ii) not to neglect the hidden state as CPGs are stateful networks.

We are going to analyse these aspects separately in the following sections.

2.1 Differentiable Central Pattern Generators

Since equations in |16] describe a system in continuous time, we need to discretise
them for use as a discrete-time robot controller, as in eq. (I):

6! = 2mi(d) + ¢ + €
t_ t—1 . rgt—1 t—1

G =227 wiysin(0; " — 0,7 — ¢ij) (1)

it = ai(§(pi(d}) — 1) —77) + ki

zt = rlcos(6?)
where ! describes the value at the t-th time-step, 6; and r; are the scalar state
variables representing the phase and the amplitude of oscillator i respectively,
v; and p; determine its intrinsic frequency and amplitude as function of the
input command signals d;, and a; is a positive constant governing the amplitude
dynamics. The effects of the couplings between oscillators are accounted in (;
and the specific coupling between 7 and j are defined by the weights w;; and
phase ¢;;. The signal x; represents the burst produced by the oscillatory centre
used as position reference by the motors. Finally, & and k; are the feedback
components provided by the MLP network.

In order to take advantage of modern technology for parallel computation,
e.g. GPUs, there is a strong need to translate the equations in |16] into a tensorial
formulation which describes the system in a whole enabling batch computa-
tions. Let N be the number of CPGs in the network, then:

6t =2rC,(V, DY) + z'1 + =1

Z' = (WV) % (AR"™1) xsin(A0 ™t — ATO' ! — @V) 9
R' = (AV) % (4L (P(V,D") - R" ") = R" ") + K* @)
X' = R cos(0")

Here, © € RY and R € RY are the vectors containing #; and r;, while
Z € RY and K € RY contain & and k; respectively. V € RM contains the M,
constant parameters to be optimised of the network composed by the N CPGs.

This said, C, : RMR? — RN, P : RM R? — RN and A4 € RV*M are
mappings from the set V and the command D? € R? to the parameters that lead
vi, p; and a; respectively. Z € RNV*¥ instead takes into consideration the effects
of the couplings of each CPG to each CPG; all the effect to i-th CPG will be then
the sum of the i-th row of Z as in Z 1, where 1 is a vector of N elements with
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Figure 3: The images above show the difference between back-propagation for
classic RNNs and CPGs . In particular to train RNNs, the matrices
Wahs Why, Whi have to be tuned, where Wp,;, regulates the evolution between two
hidden states. Instead, for CPGs only the parameters in 6, and (eq. ) need
tuning, while the evolution of the hidden state is determined by an integration
operation.

value 1. Within Z, W € RVXNXM and ¢ € RNXNXM extrapolate the coupling
weights and phases from V', while 4 € RV*NXN encodes the connections among
the nodes of the CPG network.

The reader can notice how in only already-differentiable operations have
been utilised and that the MLP’s output, i.e. the CPGs’ feedback, is injected
as a sum operation, enabling the gradient to backpropagate through the MLP
network as well. This further enables us to compute the gradient of each of the
parameters in (CPGs and MLP) with respect to the RL policy’s loss using
the auto differentiation tools provided by PyTorch.

Recurrent state in CPGs In order to efficiently train CPGs in a RL set-
ting, we need to overcome the limitations highlighted in [13]: In fact, CPGs are
considered similar to RNNs (due to their internal state) and consequently they
would have taken a significant time to train. In this section, we show how we
can reframe CPGs as stateless networks and fully determine the state from our
observation without the requirement to unroll the RNN.

RNNs are stateful networks, i.e. the state of the previous time-step is needed
to compute the following step output. As a consequence, they are computation-
ally more expensive and require a specific procedure to be trained. RNNs rely
on Backpropagation Through Time (BPTT),Fig. , which is a gradient-based
technique specifically designed to train stateful networks. BPTT unfolds the
RNN in time: the unfolded network contains ¢ inputs and outputs, one for each
time-step. Undeniably, CPGs have a recurrent nature and as such require stor-
ing the previous hidden state. However, differently from RNNs, the transition
between consecutive hidden states, represented by the matrix Wy, in CPGs is
determined a priori through simple integration operations without the need of
tuning Wj,,. This observation has two significant consequences: Firstly, CPGs do
not have to be unrolled to be trained as the output is fully determined given the
previous state and the new input. Secondly, eliminating Wp;, has the additional
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benefit of preventing gradient explosion or vanishing during training, Fig. [3b]
As a result, CPGs can be framed as a stateless network on condition that the
previous state is passed as an input of the system.

3 Evaluation

We evaluate our method on a classic RL benchmark: the hopping leg [17], which
due its periodic task is a great fit for the application of CPGs. In fact, a single
leg Fig. needs only two joints to hop and this is the minimal configuration
required by coupled Hopf-oscillators to express the complete form; less than two
would cancel out the coupling terms [16].

We based the environment on a single leg of the ANYmal quadruped robot,
which was fixed to a vertical slider. Its mass is 3.42kg, it is actuated by two
series-elastic actuators capable of 40 Nm torque, a maximum joint velocity of
15rads~! and controlled at 400 Hz. We use PyBullet |18] to simulate the system
and use a data-driven method to capture the real system’s actuator dynamics.

At every time-step the following observations are captured: the joints’ meas-
ured positions pj* and velocities v7", desired positions p?, the position py, and the
velocity vy, of the hip attached to the rail. While the torques t;l and the planar
velocity of the foot vjf’y are instead used in computing the rewards, as described
in the following. To train CPG-ACTOR, we formulate a reward function as the
sum of five distinct terms, each of which focusing on different aspects of the
desired system:

r1 = (1.2 - max(v, 0))* T4 = Z —1e*. (ifjl)2
7

re = Z —0.5¢72 - (p fp;-”)2 rs=—le?- [Erdl (3)
7

3 = Z —le 3. (v;-”)2
J

where ; stands for joints.

In particular, r; promotes vertical jumping, 7o encourage the reduction of
the error between the desired position and the measured position, rs and 74
reduce respectively the measured velocity and the desired torque of the motors
and finally, r5 discourage the foot from slipping.

3.1 Experimental setup

CPG-ACTOR is compared against [10] using the same environment. Both ap-
proaches resort to an actor-critic formulation, precisely running the same critic
network with two hidden layers of 64 units each. Indeed, the main difference
is the actor, which is described in detail in Sec. 2] for the CPG-ACTOR case,
while |10] relies on a network with two hidden layers of 64 units each.

We trained the approaches for 20M time steps using an Nvidia Quadro M2200
GPU and an Intel(R) Xeon(R) E3-1505M v6 @ 3.00GHz CPU (8 cores) CPU;
the process lasted roughly 2 hours.
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As Sec. [ illustrates, an appropriate comparison between CPG-ACTOR and
10| required the latter to be warm-started to generate desired positions resulting
in visible motions of the leg. Differently from the salamander , already tuned
parameters are not available for the hopping task, hence a meaningful set from
@[I was used as reference. The warm-starting consisted in training the actor
network for 100 epochs in a supervised fashion using as target the aforementioned
parameters.

@

0.
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0.0 \/\/J \; /\
—— CPG-Actor (with feedback) 05
== CPG-Actor-Critic (baseline) o 00 o
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(b) Desired positions generated by
CPG-Actor-Critic and CPG-
ACTOR.
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(a) Episode reward over 20M time
steps horizon.

Onr [radls]
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(c) Comparison between 6, eq. (2), (d) Comparison between #, eq. ,
generated by CPG-Actor-Critic generated by CPG-Actor-Critic [10]
and CPG-ACTOR. and CPG-ACTOR.

Figure 4: @ represents how the reward evolves during training, each approache
run five times and averaging the rewards. trajectories generated by the dif-
ferent approaches: warm-start produces an output similar to CPG-ACTOR
without feedback. While CP G-AcCTOR with feedback presents a heavily reshaped
signal. The different contribution of the feedback in the two aforementioned ap-
proaches is explained by (4c|) and . The feedback — in CPG-ACTOR case —
is interacting with the controller resulting into visibly reshaped 6 and 7 (green
lines).

4 Results

4.1 CPG-ACTOR and previous baselines, comparison

The results of the comparison between CPG-ACTOR ans can be seen in
Fig. Although the warm-starting procedure results in a performance im-
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provement for [10] (red line vs blue line), CPG-ACTOR (green line) achieves
roughly a twenty times higher reward after 20 million training time-steps.

We investigated the reason of such different performances and we argue it lies
in the way the feedback affects the CPG controller. Figures [Ac| and [Ad] represent
the evolution over time of the CPGs. Observing 0 and # in experiments with
[10] it is evident they do not show responsiveness to the environment, since
the blue and the red lines remain almost flat during the whole episode. On
the other hand, § and # in CPG-ACTOR experiments (green line) demonstrate
substantial and roughly periodic modifications over time. Although [10] relies
on feedback information to infer the CPGs dynamics, in practise the effects of
the feedback signals on the shape of the output variables are rather weak when
compared to CPG-ACTOR, as visible in Fig. b} in the case of CPG-ACTOR
the original CPG’s cosine output is heavily reshaped by the feedback, while [10]
presents an almost-sinusoidal behaviour. Hence, to achieve successful hopping
strong feedback information is crucial.

To further assess our intuition, we show CPG-ACTOR’s open-loop (i.e. without
feedback) behaviour (orange line), which shows performances on par with [10]
after warm-start. Indeed, albeit explicitly penalised by eq. , both led to
policies with the foot sliding on the floor and, as such, with low vertical ve-
locity (yet slightly oscillating as if hopping); this behaviour results in low final
rewards even after a large number of training episodes (20 M). It is then evid-
ent that the direct propagation of the gradient through a differentiable CPGs
allows CPG-ACTOR to learn an effective correction to the open-loop behaviour
through the sensor feedback.

4.2 Evaluation of progressive task achievement

The last set of experiments presented assess how CPGs’ outputs and the overall
behaviour evolve over the course of the learning. The plots in Fig. [1] present
the system at 1, 20 and 50 million time-steps of training. Figure shows the
progress of the hopper in learning to jump; indeed, the continuous and dotted
lines — respectively indicating the hip and the foot position — start quite low
at the beginning of the training, to almost double the height after 50 millions
time-steps.

5 Discussion and Future work

We propose CPG-ACTOR, an effective and novel method to tune CPG control-
lers through gradient-based optimisation in a RL setting.

In this context, we showed how CPGs can directly be integrated as the
Actor in an Actor-Critic formulation and additionally, we demonstrated how
this method permits us to include highly non-linear feedback to reshape the
oscillators’ dynamics.

Our results on a locomotion task using a single-leg hopper demonstrated that
explicitly using the CPG as an Actor rather than as part of the environment
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results in a significant increase in the reward gained over time compared with
previous approaches.

Finally, we demonstrated how our closed-loop CPG progressively improves
the hopping behaviour relying only on basic reward functions.

In the future, we plan to extend the present approach to the full locomotion
task by utilising the same architecture shown in Fig. [Ta] with a CPG-network
made of 12 neurons in order to be able to control a quadruped robot with 12
DOFs.
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