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Abstract

Over the years, the separate fields of motion planning, mapping, and human trajectory prediction have advanced considerably.
However, the literature is still sparse in providing practical frameworks that enable mobile manipulators to perform whole-body
movements and account for the predicted motion of moving obstacles. Previous optimisation-based motion planning approaches
that use distance fields have suffered from the high computational cost required to update the environment representation. We
demonstrate that GPU-accelerated predicted composite distance fields significantly reduce the computation time compared to cal-
culating distance fields from scratch. We integrate this technique with a complete motion planning and perception framework
that accounts for the predicted motion of humans in dynamic environments, enabling reactive and pre-emptive motion planning
that incorporates predicted motions. To achieve this, we propose and implement a novel human trajectory prediction method that
combines intention recognition with trajectory optimisation-based motion planning. We validate our resultant framework on a
real-world Toyota Human Support Robot (HSR) using live RGB-D sensor data from the onboard camera. In addition to provid-
ing analysis on a publicly available dataset, we release the Oxford Indoor Human Motion (Oxford-IHM) dataset and demonstrate
state-of-the-art performance in human trajectory prediction. The Oxford-IHM dataset is a human trajectory prediction dataset in
which people walk between regions of interest in an indoor environment. Both static and robot-mounted RGB-D cameras observe
the people while tracked with a motion-capture system.
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1. Introduction

In this work, we focus on the deployment of mobile manipu-
lators in dynamic indoor workspaces, such as a household envi-
ronment. When robots operate in real-world environments, par-
ticularly where humans may co-occupy the workspace, safety is
paramount. There is an extensive literature base in the space of
‘autonomous road vehicles’ for understanding and predicting
‘pedestrian’ trajectories to assist motion planning and collision
avoidance [52, 4, 16, 38]. In contrast, less work has focused on
accounting for the predicted trajectories of humans when plan-
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ning whole-body robot motions in indoor environments, moti-
vating the work presented here.

Compared to the static case, dynamic environments pose
many additional challenges that need to be addressed for robots
to operate safely and efficiently. To perform tasks in the pres-
ence of moving obstacles, motion planning calculations must
be performed online and quickly for a robot to react to environ-
mental changes that would otherwise result in collisions. For
reactive behaviour to take place, the robot’s perception pipeline
must be continuously updated online so that changes can be
perceived sufficiently fast for the motion planning pipeline to
react in time. In our previous work [14], we presented an in-
tegrated framework to enable such reactive behaviour by us-
ing a receding-horizon implementation of GPMP2 [42] in con-
junction with the fast GPU-based perception pipeline within
GPU-Voxels [22, 25]. While this work enabled reactive whole-
body motion planning in response to a dynamic environment,
it lacked understanding of dynamic elements in the environ-
ment and any reasoning about how they may move in the fu-
ture. We further introduced the concept of predicted compos-
ite distance fields [13] as a fast method of incorporating the
predicted motion of moving obstacles directly into a distance
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field (signed or unsigned) representation of the environment for
time-configuration space planning. Using this method, separate
environment representations are maintained for each timestep
in the planned robot trajectory and moving obstacles are propa-
gated using a motion prior, most commonly a constant-velocity
model (CVM). We hypothesised that further improvements
could be achieved by firstly leveraging parallelism in the prob-
lem and utilising GPUs to perform the ‘compositing’, and sec-
ondly by incorporating additional scene insights for more real-
istic obstacle trajectory predictions.

In this paper, we propose an integrated framework for
predictive whole-body motion planning in dynamic environ-
ments. For motion planning, we propose the Receding Horizon
And Predictive Gaussian Process Motion Planner 2 (RHAP-
GPMP2) – a receding-horizon motion planner that uses com-
posite distance fields to account for the predicted motion of hu-
mans in the workspace. We use a state-of-the-art image seg-
mentation method to identify humans and remove dynamic ob-
jects from the maintained voxelmap of the static scene. We
investigate the task of human motion prediction and propose a
planning-based human trajectory prediction method that com-
bines human intention recognition with trajectory optimisation.
The proposed method efficiently calculates human trajectory
predictions on a 2D grid. We subsequently embed these pre-
dictions in a 3D environment representation used for collision
avoidance by considering humans as cylinders. To explore the
problem and aid our analysis of the methods, we further pro-
duce and release a dataset for human trajectory prediction that
includes robot-perspective RGB-D sensor data. We validate our
complete framework in hardware experiments and demonstrate
effective collision avoidance across multiple scenarios using a
trajectory optimisation-based approach to whole-body motion
planning in the presence of moving obstacles; one such sce-
nario is shown in Fig. 1.

The key contributions of this paper are:

• A receding-horizon motion planner that uses composite
distance fields to perform time-configuration space mo-
tion planning – Receding Horizon And Predictive Gaus-
sian Process Motion Planner 2 (RHAP-GPMP2).

• A novel goal-oriented planning-based human trajectory
prediction method that combines human intention recog-
nition with trajectory optimisation.

• A comparison of the performance boost provided by GPU-
calculated predicted composite distance fields with a state-
of-the-art algorithm (PBA).

• Experimental verification of our integrated framework on
an 8-DoF mobile manipulator in 3D dynamic environ-
ments using live sensor data.

• Release of the Oxford Indoor Human Motion (Oxford-
IHM) dataset which comprises human-motion trajecto-
ries in an indoor environment, including motion-capture
ground truth trajectories, static RGB-D camera images,
and RGB-D data captured from the perspective of a mov-
ing robot.

Figure 1: A Toyota Human Support Robot (HSR) is given a whole-body goal
to place an object on a table at the other end of the room. A wall obstructs
the robot’s path and, during execution, a person walks towards a goal located
behind the robot. Using our proposed approach and accounting for the predicted
trajectory of the person, the robot re-plans to pre-emptively move out of the
person’s path before continuing towards the goal.

• An open-source release of our framework which combines
human motion prediction with GPU-optimised predicted
composite distance fields for trajectory optimisation-based
motion planning1.

2. Related Work

In this research, we focus on the development of an inte-
grated framework at the intersection of environment mapping,
whole-body motion planning in dynamic environments, and hu-
man motion prediction. In the following sections, we review the
relevant work across these areas.

2.1. Perception and Motion Planning in Dynamic Environ-
ments

Although much of the mapping literature has focused on
static environments [44, 68, 69], there have been works that
consider dynamic environments. Static-Fusion [61] uses ge-
ometric clustering to segment and filter out dynamic obsta-
cles from RGB-D images and fuse observations into a dense
static reconstruction of the environment. PoseFusion [76] com-
bines OpenPose [10] with ElasticFusion [69] to reconstruct the
static scene while removing humans from the reconstruction.
While OpenPose can be used to estimate the positions of body
joints of humans within an RGB image, other dynamic scene
reconstruction methods consider instance segmentation or opti-
cal flow techniques to separate dynamic parts of the scene from

1Code available at: https://github.com/ori-drs/

integrated-dynamic-motion-planning-framework
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the static background. For example, [70] perform feature-based
RGB-D Simultaneous Localisation and Mapping (SLAM) in
dynamic environments using Mask R-CNN [20] image segmen-
tation and optical flow-based motion detection. While their ap-
proach demonstrates state-of-the-art localisation accuracy, they
report an average processing time per frame of 0.42 s and “up
to 1.10 s when mask inpainting” is required. As these num-
bers show, image segmentation is generally an expensive pro-
cess and such long computation times may result in behaviours
that lack reactivity when deployed on robots in real dynamic
environments. Zhang et al. (2019) [77] similarly use Mask R-
CNN as a method of detecting potentially dynamic obstacles
with a SLAM framework.

To achieve real-time run-rates for SLAM in dynamic en-
vironments, MaskFusion [59] supplements semantic instance
segmentation (Mask R-CNN) with geometric segmentation.
ReFusion uses a Truncated Signed Distance Field (TSDF)
based mapping approach to build static maps of the environ-
ment and filter out dynamic objects by using the residuals “from
the registration and the representation of free space” [47]. As
with most of the SLAM literature, the aforementioned mapping
systems consider the SLAM problem in isolation and do not
consider integration with a motion planner. The reverse is also
typically true, whereby motion planners in dynamic environ-
ments neglect the need for mapping to take place concurrently
with live sensing.

Park et al. (2012) [48] propose a parallel optimisation ap-
proach to motion re-planning in dynamic environments with
ITOMP. To perform collision avoidance, they utilise pre-
computed Euclidean Distance Transforms (EDTs) for static ob-
stacle costs and use geometric collision detection to assign dy-
namic obstacle costs. However, their method was only tested in
simulation and neglects consideration of the need to reconstruct
the static environment using live sensor data in the presence of
dynamic obstacles.

Voxblox [46] and FIESTA [18] propose incremental mapping
frameworks and demonstrate them online. While FIESTA uses
a kinodynamic path search method [79], Voxblox is integrated
with a trajectory optimisation-based motion planner similar to
CHOMP [45]. In both cases, only 3D path planning for aerial
vehicles is performed rather than whole-body motion planning
as we propose.

GPU-Voxels [22] is a GPU-optimised framework for mul-
tiple environment data structures that can be used for colli-
sion avoidance. In [22], the authors combine their perception
pipeline with a D*-Lite motion planner to demonstrate a mobile
robot re-planning in response to newly observed objects. How-
ever, they do not demonstrate reactive whole-body behaviour in
dynamic environments; this is likely due to the ‘curse of dimen-
sionality’ posed by search-based motion planners.

In [25], the authors built upon the GPU-Voxels framework to
explore fast, exact 3D EDT implementations, such as the Par-
allel Banding Algorithm (PBA) [8]. They use this work to per-
form fast motion planning for aerial robots with potential field
and wavefront planners, integrated with a GPU-based percep-
tion framework that leverages the parallelism in EDT computa-
tions.

Of particular interest for our research is the additional aspect
of accounting for predicted trajectories. In [39], the authors
used learnt human motions to predict the workspace occupancy
for usage with STOMP [26] in simulation experiments. Park et
al. (2019) [49] proposed I-Planner which similarly uses offline
learning of human actions to generate predicted human motions
for use in motion planning within the workspace of a 7-DoF
robot arm.

To the best of our knowledge, there does not yet exist a fully
integrated perception, motion planning, and prediction pipeline
that can enable mobile manipulators to predict the trajectories
of moving obstacles and subsequently avoid them in whole-
body motion planning tasks. We address this in the work pre-
sented here.

2.2. Human Motion Prediction

Motion prediction plays an important role in ensuring the
safety of robots and autonomous systems; anticipating how
objects will move in a scene enables robots to act in a pro-
active manner and pre-emptively respond to changes in a dy-
namic environment to avoid collisions. For inanimate dynamic
objects, such as a rolling ball, we can commonly rely on a
purely physics-based model, where simple kinematic models
(e.g. constant velocity, constant acceleration) often suffice for
enabling collision-free robot operation [60]. However, when
robots operate in environments alongside humans, safety is
of paramount importance and there is a need for more ad-
vanced motion prediction to capture the complexity of human
behaviour. This complexity stems from both internal (goal in-
tent, semantics) and external stimuli (environmental priors, ac-
tions of surrounding agents) that influence human motion. The
multitude of human motion prediction methods can be cate-
gorised by their modelling approach as physics-based, pattern-
based and planning-based methods [58].

Physics-based methods predict human motion by propagat-
ing the current state through an explicit dynamical model [21,
64, 51, 74, 27, 23]. These methods are typically efficient, inter-
pretable, and work very well for short-term prediction. How-
ever, in most cases they do not capture the complexity of the
real world, ignoring environmental cues and the possible goals
of a person. Notably, [51] propose a physics-based method that
considers a future destination and the surrounding environment.
However, their approach relies on a bird’s-eye view and is thus
not deployed on a real robot using live sensor data. Van den
Berg et al. (2011) [65] present a concept of velocity-based reci-
procity, where each agent takes into account the observed ve-
locity of other agents in order to avoid collisions with them.
While the method scales well for hundreds of agents, they did
not demonstrate its effectiveness in real-world robot experi-
ments. Hermann et al. (2015) [23] integrate human trajectory
prediction with motion planning and perception by using swept-
volume based extrapolation on live RGB-D data. However, they
use the obtained motion prediction only for stopping a robot’s
movement when potential collisions are detected, rather than
performing motion re-planning and adapting the robot’s trajec-
tory.
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Figure 2: Flowchart of our Integrated Framework.

Pattern-based methods attempt to capture human motion be-
haviour by training function approximators, e.g. neural net-
works or Gaussian processes, on pre-recorded data [1, 17, 3,
2, 72, 9, 33, 67]. These models have become dominant in re-
cent years due to their performance for long-term prediction in
complex, semantically-rich environments. However, they re-
quire offline learning with large amounts of training data and
offer limited transferability to novel environments due to poor
generalisation capabilities. Cao et al. (2020) [9] generate a
diverse synthetic dataset to bypass the tedious data collection
and propose a learning framework that exploits scene context
to improve generalisation; however, their method is computa-
tionally demanding and is not deployed on a real robot. Kratzer
et al. (2020) [33] utilise a recurrent neural network for encoding
short-term dynamics and account for environmental constraints
with trajectory optimisation; this method disregards the exis-
tence of multiple possible goals and is not demonstrated in real
environments.

Planning-based approaches assume that a person is moving
through an environment towards an existing goal while avoid-
ing obstacles [81, 66, 54, 29, 6, 57, 78]. These approaches offer
a good balance between long-term prediction performance and
capacity for generalisation, but in most cases they require an ex-
plicitly defined static map of the environment with the possible
goal locations provided, making them difficult to apply on a real
robot in an unknown environment. In [6], the authors present
a Bayesian framework for intention estimation and use prob-
abilistic roadmaps to obtain trajectory predictions. However,
as a consequence of using a sampling-based planning method
that does not account for smoothness, the predicted trajecto-
ries exhibit rapid changes of direction that are uncharacteris-
tic of humans. Ziebart et al. (2009) [81] predict goal-directed
behaviours of pedestrians by solving a soft-maximum Markov
Decision Process (MDP) with maximum entropy inverse re-
inforcement learning [80]. They demonstrate real-time robot

operation that accounts for human motion prediction but their
method has limited generalisation capabilities since it relies on
learning human reward functions from observed data. Kret-
zschmar et al. (2016) [34] presented a probabilistic framework
that learns the behaviour of interacting agents such as pedestri-
ans from demonstration using inverse reinforcement learning.
Their method was able to capture the complex cooperative nav-
igation behaviour of multiple humans, but since it also requires
learning, the generalisation capacity is limited.

To ensure safe robot operation in indoor environments, we
utilise context-specific information and devise a novel trajec-
tory optimisation-based method for human motion prediction
that respects the underlying dynamical model and environmen-
tal cues. Our proposed method, as detailed in Secs. 7.1 and
7.2, offers a hybrid approach that can be deployed in unknown
environments without any prior knowledge but can also incor-
porate information acquired both offline and online by learning
possible human goals from observed data.

3. Proposed Framework Overview

In this section, we outline the modular nature of our proposed
framework, as illustrated in Fig. 2, before examining each mod-
ule in greater detail.

The first part of our proposed framework processes RGB -
D images from the camera sensor to extract the information
required by other modules. Using a neural network-based in-
stance segmentation method (described in Sec. 5) on the RGB
images, we generate masks of objects that are detected in the
scene. While our method can be trivially adapted to other iden-
tified obstacles, in this research, we focus solely on utilising
the masks of detected humans. If masks are produced above
a user-specified threshold score, αmask, we apply the masks to
their corresponding depth images; we do this to first extract the
estimated position of the humans in the scene, and secondly as
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(a) (b) (c)

Figure 3: Photos of the marker arrangements used for motion capture tracking of the robot, environment, and humans. Left: A custom 3D-printed frame for
mounting markers on the head of an HSR robot. Middle: Multiple objects were tracked and placed in the environment to provide human ‘goal’ markers. Additional
markers were placed at the two entrance/exit locations of the arena. Right: An example setup of the static RGB-D camera within the scene. A custom camera
housing was made to attach and calibrate the Vicon markers.

a method of removing dynamic obstacles from the scene prior
to converting depth images to point clouds. The filtered point-
clouds are used to provide live updates to the maintained vox-
elmap of the static scene, while the extracted positions of people
in the scene are passed to the trajectory prediction module.

Using the estimated human positions provided by the image
processing module, we perform human trajectory prediction.
As described in Sec. 2.2, being able to account for the predicted
motion of humans is important for safe robot task execution.
While the future trajectory of an inanimate object can often be
predicted using constant-velocity or constant-acceleration mod-
els, human behaviour is more complex and requires a different
modelling approach. We propose a hybrid trajectory prediction
module (detailed in Sec. 7) that uses a lightweight planning-
based approach to perform prediction while retaining the abil-
ity to incorporate ‘learnt’ or prior information. The proposed
trajectory prediction method can rely solely on information ob-
tained from live sensor data, requiring no prior training or ini-
tialisation. As shown in Fig. 2, our trajectory prediction module
can be divided into Intention Recognition (Sec. 7.1) and Human
Trajectory Optimisation (Sec. 7.2).

After predicting trajectories for humans in the scene, we for-
ward these predictions to the mapping module so that the pre-
dicted positions of people in the scene can be composited into
distance fields that are maintained for each timestep in our pro-
posed motion planning algorithm, Receding Horizon And Pre-
dictive Gaussian Process Motion Planner 2 (RHAP-GPMP2).
With the composite distance fields being continuously updated
from the latest observations and trajectory prediction informa-
tion, our motion planning algorithm is able to re-plan and en-
able reactive, pre-emptive robot behaviours to avoid moving
people in the workspace.

4. Human Motion Dataset

For this research, we are concerned with robots that oper-
ate in indoor environments co-occupied by humans. In order
to evaluate any proposed method for human motion prediction,

Figure 4: An example map configuration used in the Oxford-IHM dataset. As
the Vicon-tracked person walks between goals in the scene, the HSR robot is
manually controlled by a human operator to move around the scene and main-
tain vision of the person.

we require an appropriate dataset that, in line with our ambi-
tions for robot autonomy, contains sensor data from the robot’s
perspective.

While there are a number of publicly available RGB-D
datasets, the majority are aimed at applications of SLAM
[62, 19], object detection [24, 36], or human activity recog-
nition [63, 75]. Sturm et al. (2012) [62] present an RGB-D
dataset where sensor data is collected from the robot’s perspec-
tive for the purpose of evaluating SLAM systems. However, the
dataset lacks the presence of moving humans and their ground
truth trajectories for which we can try to predict.

Munaro et al. (2014) [43] released the most relevant dataset
for our purposes, the Kinect Tracking Precision (KTP) Dataset.
The dataset comprises RGB-D images recorded from a robot’s
perspective in a scene where humans are moving around while
the robot performs locomotion. Totalling only four minutes of
video recording, we do not believe that the KTP dataset cap-
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tures an accurate representation of human motion over a wide
enough range of behaviours for prediction purposes. In their
recordings, humans move either in a linear or random manner.
While this may be how human motion appears sometimes, we
believe that humans usually have intent, i.e. a destination and
task in mind. For example, people will often travel to their
desks, a bookcase, or exit through a door in an office environ-
ment. Before people enter a room, we could intuitively generate
a prior map of where they will go and refine our belief as their
trajectory progresses.

The concept of intent motivates a dataset in which humans
are performing tasks relevant to the environment. The THÖR
dataset [56] provides human motion trajectories and broad goal
locations within an indoor experiment; however, it uses 3D Li-
DAR scans from a stationary sensor rather than RGB-D data
from a robot perspective. To address the need for a robot per-
spective RGB-D dataset with task-based human motion trajec-
tories, we propose and release the Oxford Indoor Human Mo-
tion (Oxford-IHM) Dataset2. We summarise a selection of the
most relevant publicly available datasets that include human tra-
jectories, alongside our own, in Table 1.

4.1. Data Acquisition

Our dataset was recorded in a large indoor laboratory within
which we constructed an arena similar to an office environment.
Under a Vicon motion capture setup, we created the arena of in-
terest, measuring 7.1 m × 4.2 m, with perimeter walls and two
entrance/exit locations. Within the arena, multiple large ob-
jects, such as a desk, were arranged in multiple configurations
to act both as potential goals and static obstacles. As a tracked
human walks between goals in the arena, we recorded RGB-D
images from both a static Intel Realsense D435 camera (Fig. 3c)
and a Toyota Human Support Robot’s head-mounted ASUS
Xtion Pro Live camera. Additionally, we recorded the robot’s
tf data which details the robot’s 3D pose and joint transforma-
tions over time.

While the robot supports an Ethernet connection for data
transfer, to avoid trailing cables and maintain recording band-
width, we opted to control the robot wirelessly and record robot
data locally. We used chrony time-synchronisation between
the robot’s onboard clock and an external laptop (Intel Core
i7-10875H CPU, 32 GB 2666 MHz RAM, and an NVIDIA
GeForce RTX 2070 SUPER GPU). The external laptop was
used to record Vicon marker data and RGB-D image data from
the static Realsense camera.

During recording, the robot was remotely controlled and nav-
igated around the arena, generally in such a manner that it
maintained vision of the tracked person. The overhead motion
capture setup was used to record the ground truth locations of
goals, entrance/exit locations, the robot, and the person in the
scene. The motion capture arrangement consisted of 18 Vicon
Vero 2.2 cameras (2.2 MP with 850 nm IR emitters). We cal-
ibrated the cameras using a Vicon Active Wand v2 to achieve

2Dataset available at https://ori-drs.github.io/

oxford-indoor-human-motion-dataset

a sub-millimetre average residual tracking error. For accurate
tracking, unique IR marker configurations were affixed to each
trackable object. For person tracking, reflective markers were
attached to helmets and calibrated to align each helmet’s ori-
entation with the direction of a person’s gaze when looking
straight ahead. In the cases of the robot and the external camera,
custom mounts were 3D printed (Fig. 3) and used to calibrate
each object’s tracked pose with its respective internal camera
frame.

Our dataset consists of ≈ 60 minutes of rosbag data split ap-
proximately equally across four different map configurations,
each with three runs. For each map configuration, we used
the ROS hector mapping package [30] and the robot’s onboard
Hokuyo UST-20LX laser range sensor to produce a 2D map of
the arena. To provide additional variation, our dataset uses two
people with the map configurations split equally between them.

5. Image Processing

As discussed in Sec. 2.2, numerous approaches have been ex-
plored in previous efforts to perform dense environment map-
ping in dynamic environments [61, 76, 10, 47], with many em-
ploying image segmentation techniques [70, 59, 77].

5.1. Image Segmentation

A commonly used state-of-the-art method of image segmen-
tation is Mask R-CNN [20]. Mask R-CNN is an extension of
Faster R-CNN [53] that predicts the mask of an object in paral-
lel with bounding box recognition. Image segmentation is typi-
cally an expensive operation to perform – [20] reported a frame
rate of 5 Hz on an NVIDIA Tesla M40 GPU. For our purposes
of using online environment reconstructions for motion plan-
ning in dynamic environments, we require minimal latency be-
tween making sensor observations and them being reflected in
a motion planner’s collision-checking ability. As such, in this
work we build on recent advances in image segmentation per-
formance.

While numerous works have sought to improve Mask R-
CNN, few works focus on improving the speed of the instance
segmentation [37]. In [37], the authors introduced CenterMask
and CenterMask-Lite, anchor-free one-stage instance segmen-
tation methods that outperform the current state-of-the-art –
the authors report that CenterMask-Lite with a VoVNetV2-39
backbone achieves a frame rate of 35 Hz on an NVIDIA Ti-
tan Xp GPU. We performed a local benchmarking of the latest
release, CenterMask2-Lite, against Mask R-CNN on an RGB-
D camera stream and found the lightweight CenterMask2-Lite
to run 3.2× faster than Mask R-CNN – 13.4 Hz compared
with 4.2 Hz. This test was performed using: NVIDIA RTX
2060 GPU, 8-core Intel Core i7-9700 CPU @ 4.50 GHz and
2133 MHz DDR4 RAM.

Due to the importance of fast perception and motion planning
when operating in a dynamic environment, we elected to exploit
the enhanced performance provided by CenterMask2-Lite for
image segmentation in our perception pipeline.
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Dataset Environment Duration External Sensors Robot Perspective Motion Capture Goals Map

KTP [43] Empty Room 4m 40s 8 RGB-D 3 8 8

ATC [7] Shopping Centre 41 days RGB-D 8 8 3 8

THÖR [56] Laboratory 60 mins 3D LiDAR, RGB, Eye
Tracking

8 3 3 3

L-CAS [71] Office 49 mins 8 3D LiDAR 8 8 8

MoGaze [32] Laboratory 180 mins Eye Tracking 8 3 3 3

Oxford-IHM Laboratory/Office 60 mins RGB-D RGB-D 3 3 3

Table 1: A Comparison of Publicly Available Indoor Datasets with Ground Truth Human Trajectories

MOTP (m) MOTA (%) FP (%) FN (%)
Task Ours KTP Ours KTP Ours KTP Ours KTP

Back and Forth 0.176 0.196 91.7 88.97 5.9 2.4 1.1 8.5
Random Walk 0.171 0.171 76.0 70.93 2.3 9.8 8.6 18.9
Side-by-Side 0.151 0.146 85.9 87.22 0.7 1.2 6.7 11.6

Running 0.136 0.143 91.6 94.57 0.0 1.1 4.2 4.4
Group 0.198 0.181 59.4 47.91 1.7 9.1 15.8 42.53

Table 2: Image Processing and Human Position Estimation Benchmarking. For comparison, the KTP performance metrics are replicated from [43].

5.2. Human Position Estimation
As described previously, and illustrated in Fig. 2, we per-

form image segmentation on a stream of RGB images and use
the results for both maintaining the static representation of the
environment and for estimating the position of humans in the
scene. For each RGB frame that contains masks labelled as a
person with a score above the specified threshold, αmask, we
apply the masks to the corresponding time-synchronised depth
image. In this work, we found αmask = 0.7 to perform well in
consistently masking people even when partially obstructed by
obstacles. Using the masked depth image, we extract a depth
to associate with the person. In this work, we use the median
depth and pixel position of a person’s mask to calculate the per-
son’s 3D position in the workspace – this position is passed onto
the tracking and prediction module.

5.3. Object Masking and Pointcloud Conversion
To filter out the dynamic element of the scene, we apply valid

person masks to their corresponding depth images. The filtered
depth images are converted to pointclouds for integration into
the maintained voxelmap of the static environment. We found
that it is beneficial to apply a dilation to the person masks
before converting to pointclouds. By enlarging the segmenta-
tion masks, we reduce leakage from the dynamic masks into the
static voxelmap. We use OpenCV to perform four iterations of
dilation with a 5 × 5 kernel.

5.4. Evaluation
To validate our image processing pipeline and demonstrate

its effectiveness, we evaluate our method on the KTP Dataset
[43], using the same metrics as used in their evaluation [5]. Due
to the ground truth positions in this dataset corresponding to a
person’s tracked head location, [43] use the “centroid of the
cluster points belonging to the head of the person” and add a
10 cm offset in the viewpoint direction. To provide a similar

comparison, rather than using the entire person mask for posi-
tion extraction, we use the top 10 % of the mask to correspond
with the head. We similarly add an offset in the viewpoint di-
rection and found 12.5 cm to give the best results.

The Multiple Object Tracking Precision (MOTP) metric indi-
cates the ability of a ‘tracker’ to estimate object positions accu-
rately. The Multiple Object Tracking Accuracy (MOTA) met-
ric indicates the reliability of a tracker to identify objects in an
image frame. While we explore instance segmentation in this
work, we do not perform ‘tracking’ between frames – as such,
we assume no incorrect object associations in the calculation
of the MOTA metric. Additional recorded metrics of interest
are the False Positive (FP) and False Negative (FN) rates. Our
benchmarking results are presented in Table 2.

Importantly for this research, we produce similar MOTP val-
ues, indicating that our method achieves a similarly competitive
accuracy in estimating the position of people in a scene while
additionally providing masks for use in the environment recon-
struction. In the following section, we discuss how the extracted
positions of people feed into our trajectory prediction pipeline.

6. Mapping - Predicted Composite Distance Fields

In our preliminary work on predicted composite distance
fields [13], we suggested that further computational gains
could be achieved by performing compositions within a GPU-
leveraged framework since the core operation of the method is
the min operation and thus highly parallelisable. In this work,
we explore the gains achievable with such an implementation.

Two components are required to generate composite distance
fields. Firstly, one needs to maintain a distance field for the en-
vironment. Depending on the problem, this may be a static
distance field that is computed once at the start of the experi-
ment or continuously updated and maintained as in our frame-
work. Secondly, we require a distance field associated with
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(b)

Figure 5: Top: An example scene in simulation (Gazebo) in which a person
is detected by the robot’s onboard RGB-D camera. Bottom: The resultant 3D
occupancy grid after thresholding the composite distance field for the scene; the
distance field of a cylinder is has been composited onto the detected position of
the person.

each (moving) object that is to be composited onto the envi-
ronment distance field. These distance fields can similarly be
continuously updated to represent a live model of the obstacles
being tracked. In this work, we are interested in human col-
lision avoidance and so the fine voxelised detail of a human
is not necessary; instead, we represent humans with similarly
sized cylinder shape primitives. The use of primitive shapes
is beneficial since we do not need to be concerned with mon-
itoring the shape of the humans and maintaining a live model;
rather, we only need to compute the distance field of the prim-
itive shape once and subsequently track the human positions.
However, we note that using shape primitives is a choice in this
work rather than a limitation – the distance field could equally
be continuously updated to represent an accurate model of a dy-
namic obstacle as it is observed. There is a large literature base
on the dense reconstruction of deformable objects [12, 73].

Given the predicted positions for all dynamic obstacles in
the scene for a given time, we can perform a composition of the
aforementioned distance fields. This is achieved with a paral-
lel min operation between the environment distance field and

those of the humans at their predicted positions. An example
composition is shown in Fig. 5.

In the case of only considering a single distance field of the
environment for each observation update, i.e. no prediction,
our method will not be of benefit since only one distance field
computation is required. The benefit of our composition ap-
proach is apparent when multiple subsequent distance fields are
required for each environment update loop, such as our motion
planning approach as detailed in Sec. 8 which considers mul-
tiple predicted distance fields of the environment for each up-
date loop. As such, we perform benchmarking with respect to
the calculation time for subsequent distance fields against PBA.
Hardware specifications used were: NVIDIA RTX 2060 GPU,
8-core Intel Core i7-9700 CPU @ 4.50 GHz and 2133 MHz
DDR4 RAM.

Benchmarking results are shown in Fig. 6 where we provide
comparisons both including and excluding the time to transfer
distance fields from the GPU to the host device. Excluding the
transfer times from GPU to host, Fig. 6b shows our composite
method to reduce computation time by 89 % to 93 %. Unfortu-
nately, at the short timescales that we achieve, the transfer time
becomes a dominant factor, accounting for over 90 % of the
overall update time for the composite distance field. However,
our composite method still provides a significant performance
boost, even after accounting for the transfer time, when com-
pared to a full PBA calculation, cutting the computation time
for the resultant distance field by 40 % to 53 %.

7. Human Trajectory Prediction

In indoor environments, a person typically moves towards an
intended goal, such as a door to exit through or towards an ob-
ject to pick up, rather than in a random manner. Therefore, the
first component of our trajectory prediction module is intention
recognition in which we try to determine a person’s intended
goal.

7.1. Intention Recognition

Suppose there exists a set, G, of K possible goals for a per-
son in the environment, gk ∈ G, where a goal is represented
by a 2D position vector gk = [xgk , ygk ]

T . The purpose of the
intention recognition module is first to recognise the possible
goal locations in the environment that might be of interest to
the person, i.e. G, and secondly to identify which of these goals
is a person’s current intended goal, g.

In practice, we believe that G can be learnt over time as ob-
jects and areas of interest are observed and identified. Simi-
larly, we believe that we can infer possible goal locations by
observing human motion data over time. To explore this idea,
we consider a simple occupancy analysis method. Given the
recorded positions of a person over time, we discretise the posi-
tions across a 2D grid of arbitrary size and monitor the number
of visitations for each cell, ni, where the corresponding velocity
is less than some threshold, vthres. In the rest of this paper, we
use vthres = 0.3 ms−1 which we empirically found to be effec-
tive in indoor, household-like environments; this value is much
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(a) Including Device-Host Transfer Time (b) Excluding Device-Host Transfer Time

Figure 6: A comparison of the compute times for composite distance fields and full PBA calculations across a range of voxelmap sizes. The plotted line (green)
corresponds to the ratio between the bars, i.e. the resultant speed-up of using composite distance fields. While we see an order of magnitude speed-up in the
underlying distance field generation, we find that the device-host transfer time dominates the update time, reducing our overall speed-up from ∼ 9.1 − 13.6× to
∼ 1.7 − 2.1×.

less than the average human walking velocity meaning that grid
states which are frequently passed through will not be misla-
beled as possible goals. Using a threshold value closer to zero
would lead to poor identification of goals where a person is not
completely static but has slowed down, e.g. doors. Using the
aforementioned frequency grid, where the most visited cell has
Nmax visitations, we identify possible goal locations as those
cells with ni >

Nmax
2 . If there are multiple adjacent states iden-

tified as goals, we take the mean position of those states as a
single goal location. By implicitly learning social context cues,
our method can also learn additional goals that cannot easily
be identified from semantics, e.g. particular gathering points
without identifiable objects at those locations. Note that the de-
scribed goal estimation method can be supplemented with se-
mantic information from the perception pipeline to use identi-
fied objects such as desks, sofas, and doors as possible goals,
even if they were not visited during the observation time.

We demonstrate our occupancy analysis method on both the
Oxford-IHM and THÖR datasets; the results are shown in Fig. 7
and indicate that the most commonly occupied grid states pro-
vide accurate estimates of the ground truth goal locations in
each dataset. For both datasets, we analysed segments ∼ 5
minutes long. For the THÖR dataset, we tracked all the sub-
jects marked as visitors [56]. On the Oxford-IHM dataset, all
ground truth goals were identified, although with an offset due
to the ground truth goals being objects that humans maintain a
distance from, e.g. a person sits in front of a desk rather than
on it. On the THÖR dataset, we identified three out of the five
labelled goals; our method did not identify two of the goals for
several reasons. Firstly, these goals were in areas with frequent
motion capture track drops, a problem that does not occur with
live robot sensor data. Secondly, these goals represented exit
and entrance locations but without doors; as a result, people
passed through without slowing down. One could argue that

in this instance, these do not represent accurate goal locations
since the people will continue to walk to their true goal loca-
tions.

For a given determination of G, we want to determine the
probability of each goal, gk, being the human’s intended goal,
g, given that we have observed a history of the person’s trajec-
tory, Xh(t), where t is the current time. We use Xh(t) to denote
the matrix formed by the past N vector measurements of the
human’s position, xh(ti) = [xh(ti), yh(ti)] for times ti < t.

By framing the human intention recognition problem in this
probabilistic manner, we can use Bayes’ rule to derive a poste-
rior distribution for goal locations as

p
(
G|Xh

)
∝ p(G)p

(
Xh|G

)
, (1)

where p(G) is a distribution that encodes prior knowledge of
goal probabilities and p

(
Xh|G

)
is a conditional distribution that

represents the likelihood of the recorded past human trajectory
for a set of a given goal.

If there is no prior knowledge about the probability distribu-
tion for goals, i.e. no goal visitation history, the prior p(G) is
set as the uniform distribution. On the other hand, if we have an
observed (or pre-recorded) history of motion data and perform
the occupancy grid analysis described previously, p(G) can be
set as a categorical distribution where the prior probability for
each identified goal is proportional to its number of visitations,
Nk:

p(G = gk) =
Nk∑K
l=1 Nl

. (2)

Note that in practical applications, the prior goal distribution
p(G) can be initialised as a uniform distribution when a robot
first begins to operate in an environment. As information about
the environment and human movement is collected during oper-
ation, the prior distribution can be altered online after perform-
ing the grid occupancy analysis.
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Lastly, we calculate the likelihood, p
(
Xh(t)|G

)
, i.e. given the

human’s recent history, what is the likelihood of each possible
goal being the intended one? Intuitively, a person is likely to
look at the object they want to reach or move towards in the
near future, i.e. the intended goal. As shown by [33], for a set
of objects that represents possible goal locations in the environ-
ment, a person’s gaze is a great predictor of intention. While
we could build on this idea directly and use the difference in
angle between a person’s gaze and each object to determine the
probability of each goal, determining a person’s gaze in prac-
tice is challenging. Wearable gaze tracking equipment is shown
to work very well [33]; however, it is impractical to assume that
this is available in everyday applications such as in a household
environment. On the other hand, alternative methods that try
to estimate the human gaze from images [28, 50] require sig-
nificant computational resources to work in real-time and have
degraded performance when a person is turned away from the
robot.

For the aforementioned reasons, we use the human’s esti-
mated orientation, obtained from the history of positions, as
a predictor of intent. While the use of estimated orientation as
a motion cue may not be as effective as using a person’s gaze,
it does not require observability of the human’s face and can
suffice when other motion cues are unavailable due to hardware
constraints. We estimate the human body orientation θ̂h(ti) from
the difference between two subsequent positions

θ̂h(ti) = arctan
(

yh(ti) − yh(ti−1)
xh(ti) − xh(ti−1)

)
, (3)

where we use the ‘h’ subscript to denote human positions. The
relative orientation between a particular goal location and a per-
son is then given by

δθgk (ti) = arctan
(

ygk − yh(ti)
xgk − xh(ti)

)
− θ̂h(ti). (4)

In practice, there is likely to be noise in individual estimates of
the orientation either due to sensor measurements or because a
person may briefly look away from their goal without chang-
ing their intent. As a result, the relative orientation δθgk (ti) can
quickly vary between subsequent timesteps without an actual
change in the person’s body motion. Therefore we calculate the
average over the past N relative orientations

δθgk (ti) =
1
N

N−1∑
j=0

δθgk (ti− j), (5)

We achieve more stable estimates for the relative orientation by
aggregating the recent trajectory history. When the average rel-
ative orientation, δθgk (ti), is zero, it implies that a person is mov-
ing in the direction of the goal gk. Conversely, when δθgk (ti) is
equal to π, it implies that a person is moving directly away from
the goal gk. We thus formulate the likelihood p

(
Xh|G = gk

)
by

calculating the softmax function of the average of past N rela-
tive orientations δθgk (ti)

p
(
Xh|G = gk

)
=

eλδθgk (ti)∑K
l=1 eλδθgl (ti)

, (6)

where λ is a constant that determines the sensitivity of the expo-
nentiated cost. We use λ = 1 throughout the rest of this work, as
we empirically found that it provides good performance in the
problems we considered. For practitioners looking to similarly
use our this method in indoor, household environments, we ex-
pect this choice of hyperparameter to remain suitable. Follow-
ing Eq. 1, the intended goal position is simply extracted by cal-
culating the maximum a posteriori probability (MAP) estimate

ĝMAP = arg max
G∈G

p(G)p
(
Xh|G

)
. (7)

The estimated goal, ĝMAP, has the corresponding probability,
p
(
G = ĝMAP|Xh

)
, that represents how sure we are that the esti-

mated goal is the intended one.

7.2. Trajectory Optimisation
Once we have determined a person’s intended goal, we want

to anticipate their motion towards it in order to safely steer the
robot away from a person and avoid potential collisions. We
make several assumptions about human behaviour in our tra-
jectory prediction method.

Our first assumption is that a person, unobstructed by other
factors, will move according to a constant-velocity kinematic
model; a person walking directly towards a goal will tend to
maintain the same velocity. While we could employ a higher-
order kinematic model, such as constant-acceleration, it is un-
likely that a person will quickly change their movement speed
under normal circumstances, and so a constant-velocity mo-
tion model is sufficient for modelling human motion in open
spaces [60]. The second assumption that we make is that a
person, unlike a moving inanimate object, is generally aware
of obstacles in the environment and will try to avoid colliding
with them. As such, a robot can use information that it has
accumulated about the map of the environment as an environ-
mental prior when predicting a person’s trajectory. Our third
assumption is that a person is aware of robots operating in the
environment and will tend to avoid the space that it occupies.

Using these assumptions, we formulate the human trajec-
tory prediction problem as non-linear trajectory optimisation;
although primarily used for robot motion planning, in our im-
plementation, we use GPMP2 [42] as a state-of-the-art trajec-
tory optimisation method. Since human trajectory prediction
and robot motion planning share similarities, we believe that
GPMP2, with minor adaptations, is suitable for our prediction
problem.

In GPMP2, the motion planning problem is framed as a prob-
abilistic inference problem whereby the aim is to formulate the
posterior density of a trajectory and solve for the maximum a
posteriori (MAP) estimator, just as we did in the previous sec-
tion. Using Bayes’ rule, the posterior distribution of a trajec-
tory, x, given the likelihood on a collection of events, e, is given
by

p(x|e) ∝ p(x)p(e|x), (8)

where p(x) represents the prior that encourages trajectory
smoothness, while p(e|x) represents the probability of the
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Figure 7: By performing our occupancy analysis method on recorded motion data, we can estimate a person’s possible goals. We demonstrate this technique using
the Oxford-IHM (Figs. 7a and 7b) and THÖR datasets (Figs. 7c and 7d). We monitor the frequency of visitations to each grid state after applying a velocity
threshold, resulting in the heatmaps shown. The most occupied states provide a reliable estimate of possible goal locations. Figures 7b and 7d show maps of
example environments from each dataset with the actual (red) and estimated (blue) goal locations.

events e occurring given x. In the case of motion planning, e
corresponds to binary events that a trajectory x is collision-free
at a particular state.

In GPMP2, robot trajectories are represented as sam-
ples from a continuous-time Gaussian Process (GP), x(t) ∼
GP(µ(t),K(t, t′)), where µ(t) is the vector-valued mean tra-
jectory and K(t, t′) is the matrix-valued covariance. By care-
fully choosing a structured kernel, one can show that the resul-
tant precision matrix is exactly-sparse [42]. Consequently, [42]
show that the probabilistic inference problem in Eq. 8 can be
efficiently solved on a factor graph.

We adopt a similar factor graph formulation and adapt it for
human trajectory prediction. Using a structured kernel as in
[42], the prior and the likelihood functions can be written as a
product of functions

p(xh)p(e|xh) ∝ f prior (Xh) f like (Xh)

=
∏

i

fi
(
Xh,i

) (9)

where Xh = {xh,0, . . . , xh,N} represents the set of future hu-
man positions along the predicted trajectory. The factors F =

{ f0, . . . , fM} are functions that act on variable subsets of the tra-
jectory. As shown by [35], the posterior distribution can be
represented by a bipartite factor graph G = {X,F ,E}, where E
is the set of edges that connect variable and factor nodes.

To encourage smoothness in our predicted human trajectories
and account for the tendency to move according to a constant-
velocity motion model, we adopt the GP prior proposed in [42],

p(xh) ∝ exp{−
1
2

∥∥∥xh − µh

∥∥∥2
Kh
}, (10)

given in terms of the mean trajectory µh and covariance Kh.
We initialise the mean as a constant-velocity straight line, while
the covariance is obtained by solving the Linear Time-Varying
Stochastic Differential Equation (LTV-SDE) with constant-
velocity model system matrices, as in [42]. Due to the struc-
tured kernel choice, this GP prior has a Markovian structure;

as such, it can be written as a product of GP prior factors that
depend only on two neighbouring states, f gp(xh,i, xh,i+1).

In addition to GP priors that describe how our trajectory be-
haves, we want to impose knowledge of a person’s start and
intended goal states. In the context of the human trajectory pre-
diction, the start state is the current position of a person in the
environment, while the intended goal state is obtained by our
intention recognition method described in Sec. 7.1. We encode
start and goal states by using the following factors:

f start
(
xh,0

)
= exp{−

1
2

∥∥∥xh,0 − xcurrent

∥∥∥2
Σh,0
}, (11)

f goal
(
xh,N

)
= exp{−

1
2

∥∥∥xh,N − xgoal

∥∥∥2
Σh,N
}, (12)

where N represents the final support state of the trajectory. Σh,0
and Σh,N are the isotropic covariance matrices for the start and
goal states. Smaller values along the diagonals of these matrices
result in higher costs for deviating from the specified start and
goal states, encouraging the optimised human trajectory predic-
tion to adhere to the start and goal state constraints.

The motion prior part of the factorisation in Eq. 9 thus be-
comes a product of factors that takes into account the cur-
rent position of a person, their intended goal and the constant-
velocity movement assumption

f prior(Xh) =

f start
(
xh,0

)
f goal

(
xh,N

) N−1∏
i=0

f gp
(
xh,i, xh,i+1

)
. (13)

The remaining product of factors represents the likelihood
f like(Xh) and encodes all other state-dependent costs and con-
straints. In the case of human trajectory prediction, we partition
it into separate factors that encode collision avoidance with re-
spect to the environment, f obs, and collision avoidance with re-
spect to the moving robot, f robot. The likelihood thus becomes
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f like(Xh) =

N−1∏
i=1

f obs
i

(
xh,i

)
f robot
i

(
xh,i

)
. (14)

For environment collision avoidance factors, we adopt the
formulation from GPMP2 [42] which uses a hinge loss function
on the Euclidean distance field of the environment to penalise
states that are close to obstacles. As described in Sec. 8, in
practice, this distance field is provided by the perception part of
our pipeline and updated online; this is in contrast to previous
works which pre-compute it [42, 48].

For the robot avoidance factor, f robot, we propose

f robot
i

(
xh,i

)
= exp{−

1
2

∥∥∥h(xh,i)
∥∥∥2
Σr
}, (15)

where h(xh,i) is the hinge loss function of the distance between
a person and the robot at the current position, xr. The hinge
loss function is defined as

h(xh,i) =

εr −
∥∥∥xh,i − xr

∥∥∥
2 if

∥∥∥xh,i − xr

∥∥∥
2 ≤ εr

0 if
∥∥∥xh,i − xr

∥∥∥
2 > εr

. (16)

εr is a tolerance parameter of our formulation which indicates
how close a person is likely to get to a robot before altering their
trajectory to avoid collision. If a person is sufficiently far away
from the robot, we assume that they will not change their be-
haviour. However, if the robot comes within the safety distance,
εr, our assumption is that a person will change their behaviour
to move away from the robot and avoid collision.

The complete factor graph that we propose for human trajec-
tory prediction can be written as

p(xh|e) ∝ f start f goal
N−1∏
i=0

f gp
i,i+1

N−1∏
i=1

f obs
i f robot

i , (17)

If we cannot determine a person’s intended goal, for instance,
if we do not have a set of possible goals or the estimated
goal’s probability is low, we can omit the goal prior factor.
Our proposed prediction method will then work as a constant-
velocity model that considers collisions via the robot and ob-
stacle factors. We perform inference on the factor graph using
the Levenberg-Marquardt optimisation method implemented in
GTSAM [11] with an initial damping parameter of 0.01.

7.3. Evaluation

We evaluate the proposed trajectory prediction method on
our human motion dataset described in Sec. 4 and on the THÖR
public dataset of human motion trajectories [56]. On both
datasets, we predict over four different prediction horizons:
1.6 s, 3.2 s, 4.8 s, and 8.0 s. These prediction horizons cover
both short-term and long-term human motion prediction and
have previously been used in multiple evaluation pipelines, in-
cluding the ATLAS benchmark [55]. We thus use them for re-
taining consistency with the existing body of work in human
motion prediction evaluation.

7.3.1. Oxford-IHM Dataset

Our dataset comprises three different sensor measurements
on which we evaluate trajectory prediction performance: the
Vicon motion capture data, a static RGB-D camera and an
HSR’s head-mounted RGB-D camera. The Vicon motion cap-
ture data serves as the ground truth against which we compare
our predicted trajectories for each type of sensor data. Evalu-
ation of prediction methodologies on the motion capture data
gives an indication of their potential performance when given
accurate, high-frequency streams of data for the robot’s pose,
person’s pose and goal locations. On the other hand, evalua-
tion of each method on the data obtained using static and robot-
mounted RGB-D cameras indicates their respective prediction
performance when operating in real-world environments. Pre-
dictions on these data sources account for errors in human posi-
tion estimation arising from factors such as measurement noise,
misdetections, and occlusions.

Further, we compare the performance of our proposed
method on the motion capture data with two ablations: (1) with-
out the intention recognition proposed in Sec. 7.1, (2) with-
out the robot avoidance factor proposed in Eq. (15). These
two ablation studies enable us to assess the respective impact
of the two features on human motion prediction performance.
For each data source, we compare the performance of our pro-
posed method against two baselines: (1) Constant Velocity
Model (CVM), (2) Linear Velocity Model (LVM), similar to
the ATLAS benchmark [55]. The CVM generates predictions
by forward propagating the velocity of the person’s last ob-
served state, while the LVM model generates predictions by for-
ward propagating the observed average velocity of the person.
We evaluate trajectory prediction performance using commonly
used geometric metrics: Average Displacement Error (ADE)
and Final Displacement Error (FDE) [58]. ADE measures the
average error across predicted trajectories and the ground truth
trajectory, while FDE measures the error of the final predicted
point. Since motion capture and RGB -D measurements are in-
herently asynchronous, for evaluation on RGB-D data sources,
we use GP interpolation [42] between states that are temporally
closest to the ground truth measurements. For the two baselines
methods, we use linear interpolation.

The results of evaluating across all 12 runs in the Oxford-
IHM dataset, are shown in Tables 3 and 4. From the results,
our proposed method outperforms the baseline methods for
each type of sensor data and every prediction horizon. For the
shortest prediction horizon (1.6 s), our proposed method per-
forms similarly to the CVM baseline; this is expected since
our proposed method has a smoothness factor that is initialised
with a constant-velocity motion model. For short prediction
horizons, goal and environmental factors have a marginal im-
pact on human motion in absolute terms, meaning that simple
kinematic models can often suffice. However, as we predict
over longer horizons, our proposed method significantly out-
performs the baselines, in line with our expectations, since the
CVM and LVM models do not predict goal-oriented behaviour
and disregard environmental cues. Without intent recogni-
tion, our method achieves similar performance to the CVM
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Figure 8: An instance in the Oxford-IHM dataset that highlights the impact of
using a robot avoidance factor. Without the proposed robot avoidance factor,
the predicted human trajectory significantly deviates from the ground truth and
collides with the robot.

and performs significantly worse than our complete proposed
method, demonstrating the importance of intention recognition
for human motion prediction in indoor environments. Our pro-
posed method performs similarly with and without using the
robot avoidance factor, with only minor improvements being
achieved with the robot avoidance factor. However, we believe
that this factor may become more significant when operating
in cluttered environments since it achieves better prediction in
specific cases, for example, when the robot blocks a direct path
to the intended goal. Figure 8 shows an instance of such a situ-
ation in the Oxford-IHM dataset.

Using data from the static and robot-mounted RGB -D cam-
eras, we see similar performance trends to those achieved us-
ing motion capture measurements, albeit with a greater error.
However, the dominant source of this error arises from our
position estimation approach applied to the RGB-D images.
By comparing the position estimates obtained using our im-
age processing with ground truth measurements, we observe
average position estimation errors of 15.9 cm and 30.4 cm re-
spectively for the HSR RGB-D and Static RGB-D data sources.
These results suggest that by further improving the position es-
timation method, similar trajectory prediction performance can
be achieved on RGB-D sources to that achieved using high-
frequency motion capture. While the static sensor had fewer
measurement drops due to having the whole environment in its
field of view, the robot-mounted camera achieved better perfor-
mance since the robot was usually closer to the person and thus
more in accordance with the camera’s recommended ‘distance
of use’ for the camera. The results indicate that our proposed
human trajectory prediction method works effectively with live
sensor data and can be integrated within our proposed percep-
tion and motion planning framework as described in previous
sections.

7.3.2. THÖR dataset
We further benchmark our proposed trajectory prediction

method on the THÖR dataset [56] in which ten human subjects
are tracked in an indoor environment with static obstacles and
perform four different social roles that imitate typical activities
found in populated spaces (e.g. offices). Enacting these roles
results in various motion patterns, and nine out of the ten sub-
jects exhibit goal-oriented behaviour. The dataset includes five
labelled goals with known ground truth positions. The motion
capture data provides ground truth trajectories against which we
compare our predictions.

We use the ATLAS benchmark [55] to compare the perfor-
mance of our proposed method against five different methods,
including two baselines (CVM and LVM). The other three meth-
ods are local interaction models, namely the Social force model
(Sof ) [21] and its two predictive extensions Zan [74] and Kara
[27]). These models consider that multiple people are moving
in the same environment and will anticipate and evade colli-
sions with each other. As with the Oxford-IHM dataset, we
evaluate trajectory prediction performance using the ADE and
FDE.

The results of benchmarking for all subjects, across all four
runs of the THÖR One obstacle experiment, are shown in Ta-
ble 5. In contrast to the Oxford-IHM dataset, the THÖR dataset
features fewer obstacles and a larger environment, resulting in
more straight-line trajectories with constant velocity. Conse-
quently, we achieve better performance than on the Oxford-
IHM dataset. Our method is shown to outperform the base-
line methods for all prediction horizons. While the CVM base-
line achieves a similar level of performance on the shortest pre-
diction horizon, our proposed method significantly outperforms
on longer horizons for the reasons explained in Sec. 7.3.1 and
in line with our expectations. Our method marginally outper-
formed the local interaction models (Sof, Zan and Kara) on the
ADE metric, but was marginally worse on the FDE metric.

The relatively high standard deviations of the proposed
method can be explained by the different social roles assigned
to subjects on the THÖR dataset. For the Lab Worker and Util-
ity Worker roles, the proposed method achieves superior perfor-
mance in both ADE and FDE because these roles operate in a
very goal-oriented manner with no social interactions. In con-
trast, subjects in the social role, Visitor, exhibited behaviours
not currently modelled by our method, such as slowing down
to interact with other people. For these roles, our proposed
method had performed worse than the local interaction models
which consider the social component of human behaviour. By
not accounting for people slowing down, our proposed method
often predicted people travelling further than the ground truth,
mainly affecting the FDE performance.

7.3.3. Parameters
Since we use GPMP2 as the backbone for trajectory optimi-

sation, our trajectory prediction method depends on a similar
set of parameters. Its parameter Qc specifies the uncertainty in
the prior distribution and determines how heavily states are pe-
nalised for deviating away from the mean. Σobs represents the
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Prediction horizon (s)
Method 1.6 3.2 4.8 8.0

Vicon

LVM 0.5 ± 0.02 1.08 ± 0.04 1.7 ± 0.05 2.98 ± 0.07
CVM 0.28 ± 0.03 0.75 ± 0.04 1.35 ± 0.07 2.75 ± 0.11
Ours 0.28 ± 0.02 0.66 ± 0.06 0.99 ± 0.09 1.54 ± 0.11

Ours w/o Factor 0.28 ± 0.03 0.68 ± 0.07 1.04 ± 0.09 1.59 ± 0.12
Ours w/o Intent 0.28 ± 0.03 0.74 ± 0.05 1.25 ± 0.08 2.54 ± 0.12

Static RGB-D
LVM 0.78 ± 0.03 1.38 ± 0.06 2.02 ± 0.09 3.28 ± 0.1
CVM 0.59 ± 0.03 1.03 ± 0.06 1.65 ± 0.1 3.03 ± 0.13
Ours 0.59 ± 0.04 0.95 ± 0.08 1.13 ± 0.1 1.86 ± 0.14

HSR RGB-D
LVM 0.66 ± 0.03 1.26 ± 0.06 1.89 ± 0.09 3.12 ± 0.09
CVM 0.44 ± 0.03 0.91 ± 0.05 1.54 ± 0.08 2.99 ± 0.10
Ours 0.43 ± 0.03 0.81 ± 0.07 1.13 ± 0.1 1.71 ± 0.13

Table 3: Average Displacement Error (ADE) on the Oxford-IHM dataset

Prediction horizon (s)
Method 1.6 3.2 4.8 8.0

Vicon

LVM 1.03 ± 0.03 2.29 ± 0.07 3.6 ± 0.09 6.09 ± 0.18
CVM 0.64 ± 0.04 1.82 ± 0.08 3.26 ± 0.14 6.41 ± 0.2
Ours 0.65 ± 0.04 1.36 ± 0.18 1.98 ± 0.14 2.88 ± 0.15

Ours w/o Factor 0.65 ± 0.04 1.38 ± 0.18 2.02 ± 0.14 2.94 ± 0.16
Ours w/o Intent 0.65 ± 0.04 1.82 ± 0.08 3.2 ± 0.14 6.11 ± 0.21

Static RGB-D
LVM 1.34 ± 0.04 2.6 ± 0.08 3.88 ± 0.11 6.38 ± 0.2
CVM 0.92 ± 0.05 2.1 ± 0.07 3.54 ± 0.13 6.59 ± 0.22
Ours 0.92 ± 0.05 1.63 ± 0.14 2.24 ± 0.16 3.13 ± 0.18

HSR RGB-D
LVM 1.18 ± 0.04 2.45 ± 0.09 3.75 ± 0.09 6.17 ± 0.18
CVM 0.80 ± 0.04 1.98 ± 0.1 3.41 ± 0.16 6.51 ± 0.16
Ours 0.81 ± 0.04 1.42 ± 0.13 2.12 ± 0.18 3.02 ± 0.18

Table 4: Final Displacement Error (FDE) on the Oxford-IHM dataset

obstacle cost weight with smaller values more strongly penal-
ising collisions with obstacles. Since we introduce the robot
avoidance factor in Eq. 15, we have the additional parameter,
Σr, that we set to the same value as Σobs throughout this paper,
equally penalising collisions with the robot and the static en-
vironment. The parameter ε represents a safety distance from
static obstacles. For larger values of ε, optimised trajectories
will deviate more from a straight line to maintain a larger dis-
tance from obstacles. The proposed robot avoidance factor has
a similar parameter, εr, indicating a desired safety distance from
the robot.

For our evaluation, we performed a grid search over param-
eters Qc and Σobs for the Oxford-IHM and THÖR datasets. We
found that good trajectory performance was achieved for pa-
rameters in the following ranges; Qc ∈ [0.01, 0.5] and Σobs ∈

[0.02, 0.3]. We used Qc = 0.2 on Oxford-IHM and Qc = 0.05
on the THÖR dataset. Since ground truth human trajectories on
the Oxford-IHM dataset were less smooth than on THÖR due
to its environment being smaller and more cluttered, a larger
value of Qc was needed to better account for obstacle avoid-
ance in tight spaces. On both datasets we used Σobs = 0.1 and
ε = 0.4, resulting in collision-free trajectories for most predic-

tions. Note that ε also considers the radius of a person since
the obstacle cost looks at the distance between the centre of a
person and the nearest obstacle. The safety distance from the
robot was set as εr = 0.8, double the distance from static ob-
stacles because we account for the robot’s radius and also that
a person is likely to move farther from a moving robot than a
static obstacle.

Due to the underlying continuous-time trajectory represen-
tation, we must define the total duration of a trajectory, corre-
sponding to an estimation of the time required for a person to
reach their intended goal. We estimate this time by calculat-
ing the distance between the person’s current position and their
intended goal and dividing it by their current velocity. For es-
timated times shorter than the prediction horizon used for eval-
uation, we use the goal state to predict a person’s position for
timestamps after the estimated trajectory time.

8. Receding Horizon And Predictive Gaussian Process Mo-
tion Planner 2

This section describes how we integrate the methods and
concepts discussed in previous sections within a single frame-
work to be deployed on a physical robot. We build upon the in-
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Prediction horizon (s)
Method 1.6 3.2 4.8 8.0

ADE

CVM 0.15 ± 0.09 0.38 ± 0.24 0.71 ± 0.45 1.51 ± 0.91
LIN 0.29 ± 0.18 0.60 ± 0.38 0.99 ± 0.63 1.84 ± 1.08
Sof 0.18 ± 0.10 0.36 ± 0.20 0.60 ± 0.35 1.13 ± 0.67
Zan 0.15 ± 0.09 0.34 ± 0.20 0.59 ± 0.36 1.16 ± 0.70
Kara 0.16 ± 0.08 0.35 ± 0.19 0.60 ± 0.36 1.16 ± 0.69
Ours 0.15 ± 0.09 0.33 ± 0.26 0.57 ± 0.41 1.12 ± 0.83

FDE

CVM 0.28 ± 0.18 0.86 ± 0.54 1.64 ± 1.05 3.54 ± 2.11
LIN 0.49 ± 0.31 1.20 ± 0.75 2.07 ± 1.30 3.97 ± 2.27
Sof 0.29 ± 0.16 0.72 ± 0.42 1.27 ± 0.79 2.48 ± 1.54
Zan 0.26 ± 0.16 0.72 ± 0.43 1.31 ± 0.82 2.62 ± 1.61
Kara 0.28 ± 0.15 0.73 ± 0.42 1.31 ± 0.82 2.59 ± 1.59
Ours 0.28 ± 0.17 0.78 ± 0.64 1.41 ± 0.99 2.98 ± 1.89

Table 5: ADE and FDE on the THÖR dataset

Figure 9: The assignment of composite distance fields to the obstacle factors (blue) in RHAP-GPMP2. Given a long time horizon of N timesteps, we assign
independent distance fields to the first n timesteps, where n is our dynamic obstacle prediction horizon. For time-indexed obstacle factors greater than n, we assign
the nth distance field.

tegrated perception and motion planning framework described
in [14]; we use the GPU-Voxels framework to maintain a vox-
elmap of the scene and compute distance fields [22, 25], while
motion planning is performed using GPMP2 in a receding-
horizon manner. However, we introduce several extensions.

Firstly, as discussed in Sec. 3 and Sec. 5, we introduce image
segmentation to remove dynamic obstacles prior to generating
pointclouds for integration into the maintained voxelmap of the
static scene. At this point, the voxelmap can undergo further
filtering if necessary. In the presence of dynamic obstacles, we
found it beneficial to filter out voxels that have fewer than five
connected voxels; this reduced the instances of spurious vox-
els being designated as occupied in the voxelmap of the static
scene.

Secondly, we propose the Receding Horizon And Predic-
tive Gaussian Process Motion Planner 2 (RHAP-GPMP2). As
described in Sec. 7.2, GPMP2 formulates the motion plan-
ning problem as probabilistic inference on a factor graph. In
RHAP-GPMP2, we continuously monitor the validity of the
current trajectory, re-estimate the expected time-to-goal, and re-

optimise trajectories to re-evaluate their cost as we observe the
environment. If the current trajectory becomes invalid or a re-
optimised trajectory significantly lowers the cost, we generate a
new factor graph for trajectory optimisation. We use a straight-
line trajectory initialisation for the first optimisation and in re-
covery behaviours; otherwise, we re-use and re-optimise the
previously planned trajectory to maintain smoothly executed
trajectories. In previous work, we used a singular voxelmap
that is maintained, converted to a distance field, and sent to all
obstacle factors within the factor graph used for motion plan-
ning. However, RHAP-GPMP2 builds upon the concepts pre-
sented in [13] and extends the motion planning work to time-
configuration space planning. To achieve this, we maintain:

1. A static voxelmap of the scene
2. A distance field (static or maintained) for each dynamic

obstacle (discussed in Sec. 6)
3. A sequence of n composite distance fields.

The variable n is determined by how far into the future we
wish to incorporate predicted positions for moving objects in
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the scene. In this work, we use a time-discretisation between
factor graph support states of 0.5 s and so choose a value of
n = 20, corresponding to a time horizon of 10 s. Each time-
indexed obstacle factor in the factor graph is associated with a
corresponding time-indexed composite distance field. For time-
indices greater than n, we assign the composite distance field
for time index n. Distance field assignment for RHAP-GPMP2
is illustrated in Fig. 9.

During each update loop, the static voxelmap is updated us-
ing the latest observations of the scene (with the dilated dy-
namic obstacle masks removed) and composite distance fields
are generated using the latest trajectory predictions for dynamic
obstacles in the scene, as predicted by our trajectory prediction
module described in Sec. 3, Sec. 7.1, and Sec. 7.2. To integrate
the human prediction module, we additionally calculate a 2D
EDT of the environment by collapsing the maintained 3D voxel
grid to 2D and using PBA to calculate the corresponding EDT
on the GPU. The EDT is then transferred to the CPU for use in
the trajectory prediction module.

9. Live Hardware Experiments

To demonstrate the robustness and capabilities of our whole
integrated framework, we deploy our implementation on a
physical Toyota Human Support Robot and explore both base-
only and whole-body tasks across a range of dynamic scenarios
as follows:

1. Change of Places
2. Change of Places with Obstacle
3. Multi-Goal
4. Narrow Passage
5. Change of Places with Half-Wall

Note that in base-only tasks, the motion planner still opti-
mises in the high-dimensional space of whole-body motions.
The baselines of interest for this work are: (1) No Prediction
and (2) Prediction using CVM.

In [14], the robot was able to adapt to changes in the environ-
ment; however, the human’s trajectory was not aimed directly
towards the robot in any of the tasks. Hence, the robot was able
to perform sufficiently well without prediction. In contrast, for
most tasks presented in this work, the robot is required to move
out of the way of a person in order to avoid collision.

In our hardware experiments, we perform calculations on an
external laptop connected to the HSR via an Ethernet connec-
tion to provide sufficient bandwidth for the transfer of images.
Hardware specifications for the laptop are: NVIDIA RTX 2070
Super GPU, 8-core Intel Core i9-10980HK CPU @ 5.30 GHz
and 2667 MHz DDR4 RAM.

Results. Due to the relatively high speed of the human mo-
tions in our hardware experiments, we found that the robot al-
ways ended up in collision without accounting for the human’s
predicted motion. We provide supplementary video footage of
these experiments3 and describe the results of each experiment
in the following subsections.

3Supplementary video available at https://youtu.be/gdC3mpZNjG4

9.1. Change of Places - Prediction is Needed
In our simplest task, Change of Places, we do not provide

static obstacles, and the robot is tasked with a base-only goal in
front of a person. During the task, the person walks towards a
goal behind the robot. The resultant task is illustrated in Fig. 10.
We observed that in the No Prediction case, without predicting
the human’s trajectory, re-planned robot trajectories repeatedly
become invalid, resulting in collision. Due to the straight-line
nature of this task, we found that the CVM performed equally
as well as our full prediction method. For brevity, in further
tasks, we only consider the CVM baseline.

9.2. Change of Places with Obstacle - Limitations of the CVM
With the addition of a central obstacle to the previous task,

both the robot and human must take curved paths. Results are
illustrated in Fig. 11. This experiment highlighted the limitation
of the CVM – when a person follows a curved path, the resultant
prediction is tangential to the actual path. In this task, this er-
roneous prediction results in collision. In contrast, our method
accurately predicted the person’s trajectory, enabling the robot
to follow a collision-free trajectory.

9.3. Multi-Goal - Robust to Intention Recognition
While the goal-based aspect of our prediction framework is

more extensively evaluated in Sec. 7.3, we provide a hardware
experiment in which the person is determined to have two po-
tential goals: one behind the robot’s starting position, the other
at a hand-wash station across the robot’s path. The robot is
tasked with a whole-body motion to place a can on the table
opposite. Across multiple trials, the robot successfully predicts
the person’s intended goal and adapts its motions appropriately
to execute the task collision-free. Figure 12 illustrates these
results.

9.4. Additional Capabilities
We additionally tested our approach in a Narrow Passage

task and a variant of the Change of Places with Obstacle ex-
periment in which the central obstacle was replaced with a wall
across half of the room. In both tasks, the robot successfully
adapted to the predicted trajectory of the person and moved to
the side of the person’s path before continuing towards the goal.
Images from the two tasks are shown in Figures 1 and 13.

10. Discussion

One advantage of our proposed human trajectory prediction
approach is that it bridges the gap between model-based and
learning-based prediction methods. A major limitation of learnt
models is their ability to transfer to scenarios that differ from
those in which it was trained. In contrast, an appealing attribute
of our human trajectory prediction method is that it can be read-
ily deployed in any environment by defaulting to a constant-
velocity model while retaining the ability to improve over time
as a prior distribution is learnt over likely human goal inten-
tions. Moreover, employing methods such as deep neural net-
works to learn the intricacies of human movement comes at the
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(a) Start (b) No Prediction results in collision (c) Both predictive methods succeed

Figure 10: Change of Places – the robot is tasked with a base-only goal in front of a person. During execution, the person walks towards a goal behind the robot,
requiring the robot to react and move out of the way. All trajectories initially follow a straight line (purple), but as the person approaches, the replanned trajectories
for each method diverge as highlighted by the different colours for No Prediction (red), CVM with Prediction (yellow), Proposed Method with Prediction (green).
We find that without accounting for the prediction trajectory of the person, the robot collides with the person. In contrast, our proposed framework can avoid
collision and complete the task.

cost of large data acquisition and annotation, in addition to the
computational burden. Since one of the main concerns in our
work is the ability to execute in real-time on a mobile manip-
ulator, we require our method to be lightweight since it is run
concurrently with other parts of the pipeline. An interesting
direction for further research would be to explore the online-
learning of human intentions further and incorporate scene se-
mantics. This could also include accounting for social rules and
human patterns of behaviour [40] when extending to the case of
multiple humans in a scene.

In [14], no additional filtering was applied to the maintained
voxelmap to remove ‘lingering’ voxels that a moving obstacle
may leave. In this work, we found that these lingering voxels
provided a substantial disadvantage for motion planning com-
pared to our proposed method; the proposed method uses di-
lated segmentation of dynamic obstacles, resulting in a cleaner
static voxelmap. As such, to provide an appropriate No Predic-
tion baseline in line with our previous work, we introduced the
segmentation pipeline such that the human obstacle is tracked
and composited into the singular distance field used for the mo-
tion planning.

While we obtained robust re-planning and collision avoid-
ance behaviours across various tasks, there are several limita-
tions in the presented work that are worth noting. Firstly, we
do not explicitly model uncertainty in our current method of
compositing the predicted positions of moving obstacles. In-
stead, we account for a margin-of-safety via the ε parameter
within the GPMP2-based obstacle factors – ε determines the
upper distance used for hinge-loss obstacle costs. While further
exploration of this was beyond the scope of the presented work,
we could enlarge the volume of the person/cylinder over the
course of the prediction time horizon to appropriately account
for a growing uncertainty in future position as time increases.

In this work, we demonstrated that GPU implementations
of predicted composite distance fields can provide a significant
performance boost compared to calculating distance fields from
scratch. However, as shown in Fig. 6, the key bottleneck for fur-

ther composite distance field performance gains is the device-
host transfer time. Future work could explore alternative ap-
proaches to minimise data transfer between device and host.

While this research focused on performing motion planning,
trajectory prediction, and collision avoidance in the presence of
a single human, our methodology can scale to multiple dynamic
objects which remains a topic for future work. The proposed
trajectory prediction method could account for multiple agents
by the addition of factors between each agent similar to the
proposed robot avoidance factor, in which case the assumption
would be that the agents would try to avoid collisions between
them. Note that the modularity of the proposed framework al-
lows for integration of trajectory prediction methods that can
account for more complex ways of interaction between agents.
The computed trajectory predictions would then be straightfor-
wardly included in the composite distance field and considered
during motion planning. Similarly, our modular framework al-
lows for the extension towards more collaborative robot tasks,
such as motion planning in the presence of articulated human
motions. While trajectory prediction and collision avoidance
of such motions were beyond the scope of this work, it is fully
compatible with our method of using composite distance fields
for embedding this information and remains an interesting di-
rection for future work. The computation time for composite
distance fields with multiple dynamic obstacles is both rela-
tively computationally cheap (Fig. 6) and scales linearly with
the number of dynamic obstacles. As previously mentioned, the
computation will still be dominated by the device-host transfer
time for household environments.

A natural limitation of our motion planning implementation
is that the optimisation is prone to get stuck in local minima
by only optimising a single trajectory. While this did not re-
sult in collisions in our experiments, the phenomenon is evi-
dent in trajectories such as Figures 11c and 12c – rather than
planning to travel on the other side of the static obstacle to the
human, the re-planned trajectory avoids the human but stays
within the same homotopy class. To address this, one could
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(a) Change of Places with Obstacle

(b) CVM Prediction (c) Our Prediction

Figure 11: Change of Places with Obstacle – a person walks around a static
obstacle towards the robot’s starting location. Meanwhile, the robot is tasked
with a whole-body goal to place a canister on top of a table on the other side of
the room. Fig. 11a shows the trajectories taken by our method (green) and using
the CVM (yellow). While our methods avoided the person, the CVM trajectory
did not move out of the way in time, requiring the human to slow down to avoid
a collision. The reason for this is explained by Figures 11b and 11c which
show superposed 2D projections of the 3D composite distance fields used for
motion planning at two given moments in time. While our prediction method
more accurately predicts the human’s trajectory, the CVM predicts a trajectory
tangential to the actual one taken.

consider maintaining and optimising multiple trajectories at a
time in different homotopy classes, such as work by [31] and
[41], however, this is likely to increase the planning time and
limit the robot’s ability to react.

It is worth noting that we use two different motion planning
approaches in our proposed framework. For robot motion plan-
ning, we use predicted versions of the environment for each
time step, while for human trajectory prediction, we only use
the latest observation of the environment. Our reasoning for
this is two-fold; firstly, the walking speed of a human is signifi-
cantly higher than that of the robot’s mobile speed, so a human
has less need to account for the predicted trajectory of the robot
as it appears relatively static. We expect this assumption to hold
true in household-like environments. Secondly, from our ex-
perience, humans will readily travel much closer towards the
path of a moving robot, while from the robot’s perspective, we
need to retain a more cautious approach to collision avoidance.
There are certain cases in which a robot’s trajectory, rather than

(a)

(b) (c) (d)

Figure 12: Multi-Goal – the robot is tasked with a whole-body goal to place a
canister on a table on the other side of a static obstacle. A person in the scene
has two possible goal locations - the first is behind the robot’s starting location,
the second is at a hand-wash station in front of the robot. This experiment
demonstrated our framework’s ability to adapt and update human trajectory
predictions even when the human’s intended goal is deemed to have changed.
Figure 12b shows the initial planned robot trajectory superposed on an aerial
view of the ground distance field. Figure 12c shows the updated trajectory as the
human is deemed to be moving towards the hand-wash station while Fig. 12c
shows the updated trajectory as the prediction module correctly identifies that
the person’s intended goal is the one behind the robot.

just its static position, will affect human motion. For exam-
ple, consider when a human would follow the robot in a narrow
passage instead of taking another path. Consideration of the
robot’s future movement would incur additional computational
cost while, in practice, we likely do not need to account for
such cases since the knowledge that a human is following the
robot through a narrow passage will not affect the robot’s tra-
jectory; accounting for the human’s possible needs and timing
constraints is beyond the scope of this work.

A final limitation of our implementation is that we only pre-
dict trajectories for dynamic obstacles that have been ‘recently’
observed by the robot. In our experiments, we use a threshold
value of 2 s – if the dynamic obstacle is not re-observed within
this time, no trajectory prediction for the object is used in the
robot’s motion planning. An instance of this can be seen in
the Multi-Goal section of the supplementary video. After the
human reaches the hand-wash station, it remains outside the
camera’s field-of-view on the robot for a significant period of
time; the predicted collision object for the human thus disap-
pears. While heuristic methods could be employed here, such
as assuming that a dynamic object remains on its last known tra-
jectory or position, we believe that a more appropriate solution
would be to optimise the robot’s sensing behaviour for more ef-
fective collision avoidance and dynamic obstacle tracking. The
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Figure 13: Narrow Passage – the robot is tasked with a whole-body goal to
place a canister on top of a table that is on the other side of a narrow passage.
During execution, a person walks through the narrow passage to act as a dy-
namic obstacle. Our method achieved a successful collision-free trajectory by
re-planning to move to the side while the person walked past.

integration of such methods is beyond the scope of this work
but is explored in our previous work [15].

11. Conclusion

To enable predictive whole-body motion planning in dy-
namic environments, we introduced several novel methods and
integrated them within a novel framework that can account for
the predicted trajectories of humans in a scene. We firstly pro-
posed an intention-aware trajectory prediction model for hu-
mans in indoor environments and demonstrated state-of-the-art
performance on both a publicly available dataset as well as our
own goal-oriented dataset, the Oxford Indoor Human Motion
(Oxford-IHM) dataset, that we make publicly available.

For predictive and reactive motion planning, we proposed
the Receding Horizon And Predictive Gaussian Process Motion
Planner 2 (RHAP-GPMP2), a receding-horizon motion plan-
ner that utilising predicted composite distance fields to embed
the predicted trajectories of moving obstacles. To this end, we
demonstrated the viability and effectiveness of composite dis-
tance fields in a GPU-based perception framework and show
that composite distance fields can reduce distance field com-
putation times by 89 % to 93 %, underpinning our integrated
framework’s ability to avoid moving obstacles in real-world en-
vironments.

We verified our proposed framework on a physical Toyota
Human Support Robot (HSR) and demonstrated that our system
can use live sensor measurements to predict and incorporate the
trajectories of humans in a robot’s workspace, enabling it to
avoid collisions when performing whole-body motion planning
across a variety of challenging and dynamic environments.
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